phiflow


Namephiflow JSON
Version 3.1.0 PyPI version JSON
download
home_pagehttps://github.com/tum-pbs/PhiFlow
SummaryDifferentiable PDE solving framework for machine learning
upload_time2024-10-06 10:54:18
maintainerNone
docs_urlNone
authorPhilipp Holl
requires_pythonNone
licenseMIT
keywords differentiable simulation fluid machine learning deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # PhiFlow

[**Homepage**](https://github.com/tum-pbs/PhiFlow)
    [**Documentation**](https://tum-pbs.github.io/PhiFlow/)
    [**API**](https://tum-pbs.github.io/PhiFlow/phi)
    [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)
&nbsp;&nbsp;&nbsp; [<img src="https://www.tensorflow.org/images/colab_logo_32px.png" height=16> **Fluids Tutorial**](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb#offline=true&sandboxMode=true)
&nbsp;&nbsp;&nbsp; [<img src="https://www.tensorflow.org/images/colab_logo_32px.png" height=16> **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true)

PhiFlow is an open-source simulation toolkit built for optimization and machine learning applications.
It is written mostly in Python and can be used with NumPy, TensorFlow, Jax or PyTorch.
The close integration with machine learning frameworks allows it to leverage their automatic differentiation functionality,
making it easy to build end-to-end differentiable functions involving both learning models and physics simulations.

See the [installation Instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html) on how to compile the optional custom CUDA operations.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tum-pbs/PhiFlow",
    "name": "phiflow",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Differentiable, Simulation, Fluid, Machine Learning, Deep Learning",
    "author": "Philipp Holl",
    "author_email": "philipp.holl@tum.de",
    "download_url": "https://files.pythonhosted.org/packages/2d/00/3ac8b73847573d75671e2960514fb9ae6821a16e63fe4dd4f69d87319d71/phiflow-3.1.0.tar.gz",
    "platform": null,
    "description": "# PhiFlow\r\n\r\n[**Homepage**](https://github.com/tum-pbs/PhiFlow)\r\n&nbsp;&nbsp;&nbsp; [**Documentation**](https://tum-pbs.github.io/PhiFlow/)\r\n&nbsp;&nbsp;&nbsp; [**API**](https://tum-pbs.github.io/PhiFlow/phi)\r\n&nbsp;&nbsp;&nbsp; [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)\r\n&nbsp;&nbsp;&nbsp; [<img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" height=16> **Fluids Tutorial**](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb#offline=true&sandboxMode=true)\r\n&nbsp;&nbsp;&nbsp; [<img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" height=16> **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true)\r\n\r\nPhiFlow is an open-source simulation toolkit built for optimization and machine learning applications.\r\nIt is written mostly in Python and can be used with NumPy, TensorFlow, Jax or PyTorch.\r\nThe close integration with machine learning frameworks allows it to leverage their automatic differentiation functionality,\r\nmaking it easy to build end-to-end differentiable functions involving both learning models and physics simulations.\r\n\r\nSee the [installation Instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html) on how to compile the optional custom CUDA operations.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Differentiable PDE solving framework for machine learning",
    "version": "3.1.0",
    "project_urls": {
        "Download": "https://github.com/tum-pbs/PhiFlow/archive/3.1.0.tar.gz",
        "Homepage": "https://github.com/tum-pbs/PhiFlow"
    },
    "split_keywords": [
        "differentiable",
        " simulation",
        " fluid",
        " machine learning",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d003ac8b73847573d75671e2960514fb9ae6821a16e63fe4dd4f69d87319d71",
                "md5": "02f601d9161dd80bffb5ce50fb85e36b",
                "sha256": "6f5f036b56d40f75dcb14f5df0a72864e208fd6d30c1e5431064308301ddde63"
            },
            "downloads": -1,
            "filename": "phiflow-3.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "02f601d9161dd80bffb5ce50fb85e36b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 182245,
            "upload_time": "2024-10-06T10:54:18",
            "upload_time_iso_8601": "2024-10-06T10:54:18.064417Z",
            "url": "https://files.pythonhosted.org/packages/2d/00/3ac8b73847573d75671e2960514fb9ae6821a16e63fe4dd4f69d87319d71/phiflow-3.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-06 10:54:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tum-pbs",
    "github_project": "PhiFlow",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "phiflow"
}
        
Elapsed time: 0.36562s