TeNPy: Tensor Network Python
----------------------------
.. image:: https://img.shields.io/github/last-commit/tenpy/tenpy
:alt: GitHub last commit
:target: https://github.com/tenpy/tenpy
.. image:: https://readthedocs.org/projects/tenpy/badge/?version=latest
:alt: Documentation
:target: https://tenpy.readthedocs.io/en/latest/
.. image:: https://github.com/tenpy/tenpy/workflows/pytest/badge.svg
:alt: Build
:target: https://github.com/tenpy/tenpy/actions/
.. image:: https://img.shields.io/github/issues/tenpy/tenpy
:alt: GitHub issues
:target: https://github.com/tenpy/tenpy/issues
.. image:: https://img.shields.io/conda/vn/conda-forge/physics-tenpy?color=blue
:alt: conda
:target: https://anaconda.org/conda-forge/physics-tenpy
.. image:: https://img.shields.io/pypi/v/physics-tenpy?color=blue
:alt: PyPi
:target: https://pypi.org/project/physics-tenpy/
.. image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/Jakob-Unfried/9e2e197d6a2e6e2c9440b2c0eda04d5c/raw/tenpy_coverage_badge.json
:alt: Code Coverage
:target: https://github.com/tenpy/tenpy/actions/workflows/code-coverage.yml
TeNPy (short for 'Tensor Network Python') is a Python library for the simulation of strongly correlated quantum systems with tensor networks.
The philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the same time powerful algorithms and fast development of new algorithms for experts.
For good readability, we include an extensive documentation next to the code, both in Python doc strings and separately as "user guides", as well as simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in ~100 lines per file.
How do I get set up?
--------------------
If you have the `conda` package manager, you can install the latest released version of TeNPy with::
conda install --channel=conda-forge physics-tenpy
Further details and alternative methods can be found the file `doc/INSTALL.rst <https://tenpy.readthedocs.io/en/latest/INSTALL.html>`_.
The latest version of the source code can be obtained from https://github.com/tenpy/tenpy.
How to read the documentation
-----------------------------
The **documentation is available online** at https://tenpy.readthedocs.io/.
The documentation is roughly split in two parts: on one hand the full "reference" containing the documentation of all functions,
classes, methods, etc., and on the other hand the "user guide" containing some `introductions <https://tenpy.readthedocs.io/en/latest/introductions.html>`_ with additional explanations and `examples <https://tenpy.readthedocs.io/en/latest/examples.html>`_.
The documentation is based on Python's docstrings, and some additional ``*.rst`` files located in the folder `doc/` of the repository.
All documentation is formatted as `reStructuredText <http://www.sphinx-doc.org/en/stable/rest.html>`_,
which means it is quite readable in the source plain text, but can also be converted to other formats.
If you like it simple, you can just use interactive python `help()`, Python IDEs of your choice or jupyter notebooks, or just read the source.
Moreover, the documentation gets converted into HTML using `Sphinx <http://www.sphinx-doc.org>`_, and is made available online at https://tenpy.readthedocs.io/.
The big advantages of the (online) HTML documentation are a lot of cross-links between different functions, and even a search function.
If you prefer yet another format, you can try to build the documentation yourself, as described in ``doc/contr/build_doc.rst``.
Help - I looked at the documentation, but I don't understand how ...?
---------------------------------------------------------------------
We have set up a **community forum** at https://tenpy.johannes-hauschild.de/,
where you can post questions and hopefully find answers.
Once you got some experience with TeNPy, you might also be able to contribute to the community and answer some questions yourself ;-)
We also use this forum for official announcements, for example when we release a new version.
I found a bug
-------------
You might want to check the `github issues <https://github.com/tenpy/tenpy/issues>`_, if someone else already reported the same problem.
To report a new bug, just `open a new issue <https://github.com/tenpy/tenpy/issues/new>`_ on github.
If you already know how to fix it, you can just create a pull request :)
If you are not sure whether your problem is a bug or a feature, you can also ask for help in the `TeNPy forum <https://tenpy.johannes-hauschild.de/>`_.
Citing TeNPy
------------
When you use TeNPy for a work published in an academic journal, you can cite `this paper <https://dx.doi.org/10.21468/SciPostPhysLectNotes.5>`_ to acknowledge the work put into the development of TeNPy.
(The license of TeNPy does not force you, however.)
For example, you could add the sentence ``"Calculations were performed using the TeNPy Library (version X.X.X)\cite{tenpy}."`` in the acknowledgements or in the main text.
The corresponding BibTex Entry would be the following (the ``\url{...}`` requires ``\usepackage{hyperref}`` in the LaTeX preamble.)::
@Article{tenpy,
title={{Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)}},
author={Johannes Hauschild and Frank Pollmann},
journal={SciPost Phys. Lect. Notes},
pages={5},
year={2018},
publisher={SciPost},
doi={10.21468/SciPostPhysLectNotes.5},
url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
archiveprefix={arXiv},
eprint={1805.00055},
note={Code available from \url{https://github.com/tenpy/tenpy}},
}
To keep us motivated, you can also include your work into the list of `papers using TeNPy <https://tenpy.readthedocs.io/en/latest/papers_using_tenpy.html>`_.
Acknowledgment
--------------
This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05- CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program (KC23DAC Topological and Correlated Matter via Tensor Networks and Quantum Monte Carlo).
License
-------
Sinc TeNPy version 1.0.4, the code is licensed under Apache v2 given in the file ``LICENSE`` of the repository,
in the online documentation readable at https://tenpy.readthedocs.io/en/latest/install/license.html.
Raw data
{
"_id": null,
"home_page": null,
"name": "physics-tenpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Johannes Hauschild <tenpy@johannes-hauschild.de>, Jakob Unfried <jakob.unfried@tum.de>",
"keywords": "tensor networks, matrix product states",
"author": "TeNPy Developer Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/91/4c/928a76cdab77cd65cfeb56388f6c4d23f802ea424df87a4b01566a0a6086/physics_tenpy-1.0.4.tar.gz",
"platform": null,
"description": "TeNPy: Tensor Network Python\n----------------------------\n\n.. image:: https://img.shields.io/github/last-commit/tenpy/tenpy\n :alt: GitHub last commit\n :target: https://github.com/tenpy/tenpy\n.. image:: https://readthedocs.org/projects/tenpy/badge/?version=latest\n :alt: Documentation\n :target: https://tenpy.readthedocs.io/en/latest/\n.. image:: https://github.com/tenpy/tenpy/workflows/pytest/badge.svg\n :alt: Build\n :target: https://github.com/tenpy/tenpy/actions/\n.. image:: https://img.shields.io/github/issues/tenpy/tenpy\n :alt: GitHub issues\n :target: https://github.com/tenpy/tenpy/issues\n.. image:: https://img.shields.io/conda/vn/conda-forge/physics-tenpy?color=blue\n :alt: conda\n :target: https://anaconda.org/conda-forge/physics-tenpy\n.. image:: https://img.shields.io/pypi/v/physics-tenpy?color=blue\n :alt: PyPi\n :target: https://pypi.org/project/physics-tenpy/\n.. image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/Jakob-Unfried/9e2e197d6a2e6e2c9440b2c0eda04d5c/raw/tenpy_coverage_badge.json\n :alt: Code Coverage\n :target: https://github.com/tenpy/tenpy/actions/workflows/code-coverage.yml\n\n\nTeNPy (short for 'Tensor Network Python') is a Python library for the simulation of strongly correlated quantum systems with tensor networks.\n\nThe philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the same time powerful algorithms and fast development of new algorithms for experts.\nFor good readability, we include an extensive documentation next to the code, both in Python doc strings and separately as \"user guides\", as well as simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in ~100 lines per file.\n\nHow do I get set up?\n--------------------\nIf you have the `conda` package manager, you can install the latest released version of TeNPy with::\n\n conda install --channel=conda-forge physics-tenpy\n\nFurther details and alternative methods can be found the file `doc/INSTALL.rst <https://tenpy.readthedocs.io/en/latest/INSTALL.html>`_.\nThe latest version of the source code can be obtained from https://github.com/tenpy/tenpy.\n\nHow to read the documentation\n-----------------------------\nThe **documentation is available online** at https://tenpy.readthedocs.io/.\nThe documentation is roughly split in two parts: on one hand the full \"reference\" containing the documentation of all functions,\nclasses, methods, etc., and on the other hand the \"user guide\" containing some `introductions <https://tenpy.readthedocs.io/en/latest/introductions.html>`_ with additional explanations and `examples <https://tenpy.readthedocs.io/en/latest/examples.html>`_.\n\nThe documentation is based on Python's docstrings, and some additional ``*.rst`` files located in the folder `doc/` of the repository.\nAll documentation is formatted as `reStructuredText <http://www.sphinx-doc.org/en/stable/rest.html>`_,\nwhich means it is quite readable in the source plain text, but can also be converted to other formats.\nIf you like it simple, you can just use interactive python `help()`, Python IDEs of your choice or jupyter notebooks, or just read the source.\nMoreover, the documentation gets converted into HTML using `Sphinx <http://www.sphinx-doc.org>`_, and is made available online at https://tenpy.readthedocs.io/.\nThe big advantages of the (online) HTML documentation are a lot of cross-links between different functions, and even a search function.\nIf you prefer yet another format, you can try to build the documentation yourself, as described in ``doc/contr/build_doc.rst``.\n\nHelp - I looked at the documentation, but I don't understand how ...?\n---------------------------------------------------------------------\nWe have set up a **community forum** at https://tenpy.johannes-hauschild.de/,\nwhere you can post questions and hopefully find answers.\nOnce you got some experience with TeNPy, you might also be able to contribute to the community and answer some questions yourself ;-)\nWe also use this forum for official announcements, for example when we release a new version.\n\nI found a bug\n-------------\nYou might want to check the `github issues <https://github.com/tenpy/tenpy/issues>`_, if someone else already reported the same problem.\nTo report a new bug, just `open a new issue <https://github.com/tenpy/tenpy/issues/new>`_ on github.\nIf you already know how to fix it, you can just create a pull request :)\nIf you are not sure whether your problem is a bug or a feature, you can also ask for help in the `TeNPy forum <https://tenpy.johannes-hauschild.de/>`_.\n\nCiting TeNPy\n------------\nWhen you use TeNPy for a work published in an academic journal, you can cite `this paper <https://dx.doi.org/10.21468/SciPostPhysLectNotes.5>`_ to acknowledge the work put into the development of TeNPy.\n(The license of TeNPy does not force you, however.)\nFor example, you could add the sentence ``\"Calculations were performed using the TeNPy Library (version X.X.X)\\cite{tenpy}.\"`` in the acknowledgements or in the main text.\n\nThe corresponding BibTex Entry would be the following (the ``\\url{...}`` requires ``\\usepackage{hyperref}`` in the LaTeX preamble.)::\n\n @Article{tenpy,\n title={{Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)}},\n author={Johannes Hauschild and Frank Pollmann},\n journal={SciPost Phys. Lect. Notes},\n pages={5},\n year={2018},\n publisher={SciPost},\n doi={10.21468/SciPostPhysLectNotes.5},\n url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},\n archiveprefix={arXiv},\n eprint={1805.00055},\n note={Code available from \\url{https://github.com/tenpy/tenpy}},\n }\n\nTo keep us motivated, you can also include your work into the list of `papers using TeNPy <https://tenpy.readthedocs.io/en/latest/papers_using_tenpy.html>`_.\n\n\nAcknowledgment\n--------------\nThis work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05- CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program (KC23DAC Topological and Correlated Matter via Tensor Networks and Quantum Monte Carlo).\n\nLicense\n-------\nSinc TeNPy version 1.0.4, the code is licensed under Apache v2 given in the file ``LICENSE`` of the repository,\nin the online documentation readable at https://tenpy.readthedocs.io/en/latest/install/license.html.\n",
"bugtrack_url": null,
"license": null,
"summary": "Simulation of quantum many-body systems with tensor networks in Python",
"version": "1.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/tenpy/tenpy/issues",
"Documentation": "https://tenpy.readthedocs.io/",
"Homepage": "https://github.com/tenpy/tenpy",
"Source": "https://github.com/tenpy/tenpy",
"User Forum": "https://tenpy.johannes-hauschild.de"
},
"split_keywords": [
"tensor networks",
" matrix product states"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8818010cf2df382e53b36e56faf0109a113b8efaa1e0a16a754c8c51a689f2f7",
"md5": "bd128e5df44f675c07e745b414ec7476",
"sha256": "6928101142f15fd882b46324262a3e2a619981a3bd14cbb57237a9f0a107ac35"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "bd128e5df44f675c07e745b414ec7476",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1168835,
"upload_time": "2024-10-02T17:42:06",
"upload_time_iso_8601": "2024-10-02T17:42:06.203319Z",
"url": "https://files.pythonhosted.org/packages/88/18/010cf2df382e53b36e56faf0109a113b8efaa1e0a16a754c8c51a689f2f7/physics_tenpy-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4dcbc790f229245d542a4f98e77d3f1784ac58d8fde39295abca5071e4103163",
"md5": "57ab89c2667395ff58893aa1bd0dba19",
"sha256": "76293037b9664951ff87d0b5bbb2abba1a11161058cc9ef605bc6d222007fa5a"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "57ab89c2667395ff58893aa1bd0dba19",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1145126,
"upload_time": "2024-10-02T17:42:08",
"upload_time_iso_8601": "2024-10-02T17:42:08.332064Z",
"url": "https://files.pythonhosted.org/packages/4d/cb/c790f229245d542a4f98e77d3f1784ac58d8fde39295abca5071e4103163/physics_tenpy-1.0.4-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "06886c37d18f1f1a9e99a279491d7129ac4cc754cdfe60792a9e4da90c4c344a",
"md5": "6eb3a16acbad57ae1d2092657ad08e7e",
"sha256": "1a60c5394069eacd965e2f1a33ba52002c82bfed9dca36a0d3ae2b1ac20c57de"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6eb3a16acbad57ae1d2092657ad08e7e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 2461968,
"upload_time": "2024-10-02T17:42:10",
"upload_time_iso_8601": "2024-10-02T17:42:10.476377Z",
"url": "https://files.pythonhosted.org/packages/06/88/6c37d18f1f1a9e99a279491d7129ac4cc754cdfe60792a9e4da90c4c344a/physics_tenpy-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c95d7cd60a69a030f076e7f501dca69882aa88c41babf8ace4c3876f37bb390c",
"md5": "63e571ba68b91b83cfac3983afd44107",
"sha256": "52c5c3d42aba97f14db5fc6f77321447b0b95b59de42833417457b05b41db3cc"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "63e571ba68b91b83cfac3983afd44107",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1119987,
"upload_time": "2024-10-02T17:42:12",
"upload_time_iso_8601": "2024-10-02T17:42:12.656549Z",
"url": "https://files.pythonhosted.org/packages/c9/5d/7cd60a69a030f076e7f501dca69882aa88c41babf8ace4c3876f37bb390c/physics_tenpy-1.0.4-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "96ad307da1f0f8910d9f94747d7e941626283079c38b1062a160ec8d3911074f",
"md5": "9df9aed6eac865e8c8b8ec8bbd6e89e3",
"sha256": "488c566493723ec0aaa08ed09906ccfe365b61854eac446d4d9a893d16f510a4"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "9df9aed6eac865e8c8b8ec8bbd6e89e3",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1170018,
"upload_time": "2024-10-02T17:42:14",
"upload_time_iso_8601": "2024-10-02T17:42:14.082745Z",
"url": "https://files.pythonhosted.org/packages/96/ad/307da1f0f8910d9f94747d7e941626283079c38b1062a160ec8d3911074f/physics_tenpy-1.0.4-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "799363028ddafb059560d067bfdbb589fcf0d5e0238b44163fda812773fbc895",
"md5": "d29969c75cba96e76a83623d6b8c21c6",
"sha256": "a08278fa2b019b3ced6eedffd7b16d15020a7cd11c6ef7a3a3d89da8c3fa2067"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "d29969c75cba96e76a83623d6b8c21c6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1145329,
"upload_time": "2024-10-02T17:42:15",
"upload_time_iso_8601": "2024-10-02T17:42:15.561588Z",
"url": "https://files.pythonhosted.org/packages/79/93/63028ddafb059560d067bfdbb589fcf0d5e0238b44163fda812773fbc895/physics_tenpy-1.0.4-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "65d752c6e77ffd3131a7937d7d90dcb779366cec2d5fc4dc79e58d5da403f55b",
"md5": "6ac28626d21043fd05a89d4f129e3e30",
"sha256": "0b75b05a1d53b8376895da95c1582abcdd4193686ef1f474052d3aac5b01e8a2"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6ac28626d21043fd05a89d4f129e3e30",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 2565317,
"upload_time": "2024-10-02T17:42:17",
"upload_time_iso_8601": "2024-10-02T17:42:17.053157Z",
"url": "https://files.pythonhosted.org/packages/65/d7/52c6e77ffd3131a7937d7d90dcb779366cec2d5fc4dc79e58d5da403f55b/physics_tenpy-1.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "716c0957ae2f46d75e978c91951aa66d131ed073ab25c9559a0dfc7943490ad8",
"md5": "907d9bc905408871f45d493e5d0218e7",
"sha256": "16bb9187893808928c98bad257bd0d9f3c795422957303333ea6622599dab6d3"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "907d9bc905408871f45d493e5d0218e7",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1121115,
"upload_time": "2024-10-02T17:42:19",
"upload_time_iso_8601": "2024-10-02T17:42:19.319287Z",
"url": "https://files.pythonhosted.org/packages/71/6c/0957ae2f46d75e978c91951aa66d131ed073ab25c9559a0dfc7943490ad8/physics_tenpy-1.0.4-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f9a1b1b18871537dada4a9e7320bda394545deb3b1cf9dffed0dd65578c8eb0c",
"md5": "83d95b636d311408d694179f6af85687",
"sha256": "b3b6291083611f886c7bba43b1172d08f0105f45f87650b19142bd5ecc829765"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp312-cp312-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "83d95b636d311408d694179f6af85687",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1169731,
"upload_time": "2024-10-02T17:42:20",
"upload_time_iso_8601": "2024-10-02T17:42:20.926928Z",
"url": "https://files.pythonhosted.org/packages/f9/a1/b1b18871537dada4a9e7320bda394545deb3b1cf9dffed0dd65578c8eb0c/physics_tenpy-1.0.4-cp312-cp312-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3aec6a674b7413e2600637b217d942f74340d2fb792b542e1c1272be9c4ec16c",
"md5": "55ae6b9255bf7e27a4078133a7d24771",
"sha256": "6e3caccf84eb9d7fcb0311240cbeab91333e4cf86116de7399831170834a3f36"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "55ae6b9255bf7e27a4078133a7d24771",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1144782,
"upload_time": "2024-10-02T17:42:22",
"upload_time_iso_8601": "2024-10-02T17:42:22.367632Z",
"url": "https://files.pythonhosted.org/packages/3a/ec/6a674b7413e2600637b217d942f74340d2fb792b542e1c1272be9c4ec16c/physics_tenpy-1.0.4-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "09ec7369b772e0507b04046163016ab5f61c95066ba9bbbea69311b695a68809",
"md5": "304e3c374ac186551fed96f848d2de3c",
"sha256": "b615016300ab98d6d1085720e73a033065fc644ba4e8aea345329707b70c5480"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "304e3c374ac186551fed96f848d2de3c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 2525909,
"upload_time": "2024-10-02T17:42:24",
"upload_time_iso_8601": "2024-10-02T17:42:24.367421Z",
"url": "https://files.pythonhosted.org/packages/09/ec/7369b772e0507b04046163016ab5f61c95066ba9bbbea69311b695a68809/physics_tenpy-1.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c5c818aee607aa8f2e6f31f3efe31ec8717a173a70f27fd57233d4f39d1d65cf",
"md5": "2131fafb776134e06e82d3c28b5b2c65",
"sha256": "81bdb17da0c48de4138d5f833be154275c655e2c801eda5814be2a932c709d59"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "2131fafb776134e06e82d3c28b5b2c65",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1113201,
"upload_time": "2024-10-02T17:42:26",
"upload_time_iso_8601": "2024-10-02T17:42:26.209624Z",
"url": "https://files.pythonhosted.org/packages/c5/c8/18aee607aa8f2e6f31f3efe31ec8717a173a70f27fd57233d4f39d1d65cf/physics_tenpy-1.0.4-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d931479a16131c03c996a24095a4b047fa4be222a72b4b6b0d799260e92234cf",
"md5": "2f0051ea0acadff2f865473e32afe925",
"sha256": "4952e97df1b7ee51a0c852b2e8d7920b36ed64b0477ca4338a4dc8618f218c4d"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "2f0051ea0acadff2f865473e32afe925",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1170522,
"upload_time": "2024-10-02T17:42:28",
"upload_time_iso_8601": "2024-10-02T17:42:28.160702Z",
"url": "https://files.pythonhosted.org/packages/d9/31/479a16131c03c996a24095a4b047fa4be222a72b4b6b0d799260e92234cf/physics_tenpy-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "296ce26b6a95b9ac0c6770df0e28238c7bf127abcc84c0632589afa282aa4ba0",
"md5": "640d47345a21189883532a4a16f67662",
"sha256": "fc6b406f830aa1363cc518ddb8f156369e6e81f5219f7f167427f0a0f06fb5d7"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "640d47345a21189883532a4a16f67662",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1147172,
"upload_time": "2024-10-02T17:42:30",
"upload_time_iso_8601": "2024-10-02T17:42:30.223573Z",
"url": "https://files.pythonhosted.org/packages/29/6c/e26b6a95b9ac0c6770df0e28238c7bf127abcc84c0632589afa282aa4ba0/physics_tenpy-1.0.4-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4710e06ac37664b74d7893b2b17918e5d78f7ae00df2974d57b92602619fb62e",
"md5": "a49d5253a166920283eab6a241f2a4f6",
"sha256": "13beea6799b57a471d0f9b04b9b3fc516cc36da502b34603a4939e97e7cc1f0a"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a49d5253a166920283eab6a241f2a4f6",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 2514252,
"upload_time": "2024-10-02T17:42:32",
"upload_time_iso_8601": "2024-10-02T17:42:32.108407Z",
"url": "https://files.pythonhosted.org/packages/47/10/e06ac37664b74d7893b2b17918e5d78f7ae00df2974d57b92602619fb62e/physics_tenpy-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ffd757d157363e54bd648e73f9a072e6bd09f809c766c7237ce035fed35eb6f5",
"md5": "fd81523a8eeabc7f5052a714a0b45ce5",
"sha256": "0667082d748a8ad11828c2c3bed485c31136f8a76dbf74e22a8f0fabc23f87db"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "fd81523a8eeabc7f5052a714a0b45ce5",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1122746,
"upload_time": "2024-10-02T17:42:33",
"upload_time_iso_8601": "2024-10-02T17:42:33.989493Z",
"url": "https://files.pythonhosted.org/packages/ff/d7/57d157363e54bd648e73f9a072e6bd09f809c766c7237ce035fed35eb6f5/physics_tenpy-1.0.4-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4a5821748ae7f4c8d4c066aaa8f9b3e44d625b47bffd96733dddd99167c780ee",
"md5": "35af3a70590b4c9447d3af5047df20d8",
"sha256": "b0ae14bdd2b276c33f3ff2395a9f4dc3c0cf94d328c07a8e5d7d4779d2309f47"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "35af3a70590b4c9447d3af5047df20d8",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1169242,
"upload_time": "2024-10-02T17:42:35",
"upload_time_iso_8601": "2024-10-02T17:42:35.930809Z",
"url": "https://files.pythonhosted.org/packages/4a/58/21748ae7f4c8d4c066aaa8f9b3e44d625b47bffd96733dddd99167c780ee/physics_tenpy-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81cc3ffd91f6d2196a8c52551c484b679b436e79a8a1bb82fc08ace9eb5fc43a",
"md5": "f7e06f81d0feb8c268df29016824e0f7",
"sha256": "fbfdb91c714b5292fc3334eb4840129b36849f72c14fece7b312115c5de4658e"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f7e06f81d0feb8c268df29016824e0f7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1145442,
"upload_time": "2024-10-02T17:42:38",
"upload_time_iso_8601": "2024-10-02T17:42:38.191969Z",
"url": "https://files.pythonhosted.org/packages/81/cc/3ffd91f6d2196a8c52551c484b679b436e79a8a1bb82fc08ace9eb5fc43a/physics_tenpy-1.0.4-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "707ce7768567583609e667ff7d00cc02986625903432d55c67fc7095710cd27e",
"md5": "6d03c0dbc6a2d496526528cae68ba1b9",
"sha256": "5a5a3d77445ef54e75a7f4e26f51fa9f2d4a49d374b2062cd886145c983a2b00"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6d03c0dbc6a2d496526528cae68ba1b9",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 2463381,
"upload_time": "2024-10-02T17:42:40",
"upload_time_iso_8601": "2024-10-02T17:42:40.254298Z",
"url": "https://files.pythonhosted.org/packages/70/7c/e7768567583609e667ff7d00cc02986625903432d55c67fc7095710cd27e/physics_tenpy-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eb49b55984ff372f966cb7abf0160cf943a0d85674ceacaab05d197a1bd8eb8e",
"md5": "8ca3d58730fe35fb621cf0736b5debf0",
"sha256": "3e6eca1e6bb459b504c936dd97f351d23a721ee097c5a66c51dff27926ae93b0"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "8ca3d58730fe35fb621cf0736b5debf0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1120242,
"upload_time": "2024-10-02T17:42:41",
"upload_time_iso_8601": "2024-10-02T17:42:41.924535Z",
"url": "https://files.pythonhosted.org/packages/eb/49/b55984ff372f966cb7abf0160cf943a0d85674ceacaab05d197a1bd8eb8e/physics_tenpy-1.0.4-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "914c928a76cdab77cd65cfeb56388f6c4d23f802ea424df87a4b01566a0a6086",
"md5": "cd7ed7793bbf2bf760fca9abbbde3078",
"sha256": "078c2fb5f466370d49761af7d6b887ae633255ce09d1b3f9fd51497584214fac"
},
"downloads": -1,
"filename": "physics_tenpy-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "cd7ed7793bbf2bf760fca9abbbde3078",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 959881,
"upload_time": "2024-10-02T17:42:47",
"upload_time_iso_8601": "2024-10-02T17:42:47.954383Z",
"url": "https://files.pythonhosted.org/packages/91/4c/928a76cdab77cd65cfeb56388f6c4d23f802ea424df87a4b01566a0a6086/physics_tenpy-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-02 17:42:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tenpy",
"github_project": "tenpy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "physics-tenpy"
}