PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.
Raw data
{
"_id": null,
"home_page": "https://github.com/mathLab/PINA",
"name": "pina-mathlab",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining",
"author": "PINA Contributors",
"author_email": "demo.nicola@gmail.com, dario.coscia@sissa.it",
"download_url": "https://files.pythonhosted.org/packages/97/38/0b99de79095e78f218baee55afddbdbb95b1156e91c9821785a67177303c/pina-mathlab-0.1.2.post2501.tar.gz",
"platform": null,
"description": "PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Physic Informed Neural networks for Advance modeling.",
"version": "0.1.2.post2501",
"project_urls": {
"Homepage": "https://github.com/mathLab/PINA"
},
"split_keywords": [
"machine-learning",
"deep-learning",
"modeling",
"pytorch",
"ode",
"neural-networks",
"differential-equations",
"pde",
"hacktoberfest",
"pinn",
"physics-informed",
"physics-informed-neural-networks",
"neural-operators",
"equation-learning",
"lightining"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f71f1c788cfe30bb89ecace74c9bc0cdf957e32cb96b47cf62c5fc13d044100a",
"md5": "c0c376774288b7e85b18331a4143b67e",
"sha256": "5537e098c040b89361856c483dc4c49ef99b759658be04eb5789eebff0cf0590"
},
"downloads": -1,
"filename": "pina_mathlab-0.1.2.post2501-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c0c376774288b7e85b18331a4143b67e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 135045,
"upload_time": "2025-01-01T03:09:50",
"upload_time_iso_8601": "2025-01-01T03:09:50.413478Z",
"url": "https://files.pythonhosted.org/packages/f7/1f/1c788cfe30bb89ecace74c9bc0cdf957e32cb96b47cf62c5fc13d044100a/pina_mathlab-0.1.2.post2501-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "97380b99de79095e78f218baee55afddbdbb95b1156e91c9821785a67177303c",
"md5": "bac66ca518da00485a786dafb9b374b8",
"sha256": "fb2cd3a2b81654abb88686cd11142de6d317fbd82eac9888f336eb77532f7df1"
},
"downloads": -1,
"filename": "pina-mathlab-0.1.2.post2501.tar.gz",
"has_sig": false,
"md5_digest": "bac66ca518da00485a786dafb9b374b8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 97591,
"upload_time": "2025-01-01T03:09:52",
"upload_time_iso_8601": "2025-01-01T03:09:52.847183Z",
"url": "https://files.pythonhosted.org/packages/97/38/0b99de79095e78f218baee55afddbdbb95b1156e91c9821785a67177303c/pina-mathlab-0.1.2.post2501.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-01 03:09:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mathLab",
"github_project": "PINA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pina-mathlab"
}