pina-mathlab


Namepina-mathlab JSON
Version 0.1.2.post2411 PyPI version JSON
download
home_pagehttps://github.com/mathLab/PINA
SummaryPhysic Informed Neural networks for Advance modeling.
upload_time2024-11-01 03:15:57
maintainerNone
docs_urlNone
authorPINA Contributors
requires_pythonNone
licenseMIT
keywords machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mathLab/PINA",
    "name": "pina-mathlab",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining",
    "author": "PINA Contributors",
    "author_email": "demo.nicola@gmail.com, dario.coscia@sissa.it",
    "download_url": "https://files.pythonhosted.org/packages/7f/69/949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106/pina-mathlab-0.1.2.post2411.tar.gz",
    "platform": null,
    "description": "PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Physic Informed Neural networks for Advance modeling.",
    "version": "0.1.2.post2411",
    "project_urls": {
        "Homepage": "https://github.com/mathLab/PINA"
    },
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "modeling",
        "pytorch",
        "ode",
        "neural-networks",
        "differential-equations",
        "pde",
        "hacktoberfest",
        "pinn",
        "physics-informed",
        "physics-informed-neural-networks",
        "neural-operators",
        "equation-learning",
        "lightining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a2fa340db8a5d338c4196a6c8d77d1380ec24cf057635c3242bd17cc0e0add69",
                "md5": "e2ca67edae915cdadec45a5c41edc033",
                "sha256": "e1607ea8060a14beab67d96e0a8f3f345e3ea14a07018e07bc64dc71eda0a7ef"
            },
            "downloads": -1,
            "filename": "pina_mathlab-0.1.2.post2411-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e2ca67edae915cdadec45a5c41edc033",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 134960,
            "upload_time": "2024-11-01T03:15:56",
            "upload_time_iso_8601": "2024-11-01T03:15:56.782278Z",
            "url": "https://files.pythonhosted.org/packages/a2/fa/340db8a5d338c4196a6c8d77d1380ec24cf057635c3242bd17cc0e0add69/pina_mathlab-0.1.2.post2411-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f69949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106",
                "md5": "42882d3f2a962d552a9d75dc261a981e",
                "sha256": "82884d2fa2a667d97b00aad2436006a01af3df316668120bfae1312c341ffb2f"
            },
            "downloads": -1,
            "filename": "pina-mathlab-0.1.2.post2411.tar.gz",
            "has_sig": false,
            "md5_digest": "42882d3f2a962d552a9d75dc261a981e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 97345,
            "upload_time": "2024-11-01T03:15:57",
            "upload_time_iso_8601": "2024-11-01T03:15:57.945192Z",
            "url": "https://files.pythonhosted.org/packages/7f/69/949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106/pina-mathlab-0.1.2.post2411.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-01 03:15:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mathLab",
    "github_project": "PINA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pina-mathlab"
}
        
Elapsed time: 0.54640s