PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.
Raw data
{
"_id": null,
"home_page": "https://github.com/mathLab/PINA",
"name": "pina-mathlab",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining",
"author": "PINA Contributors",
"author_email": "demo.nicola@gmail.com, dario.coscia@sissa.it",
"download_url": "https://files.pythonhosted.org/packages/7f/69/949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106/pina-mathlab-0.1.2.post2411.tar.gz",
"platform": null,
"description": "PINA is a Python package providing an easy interface to deal with physics-informed neural networks (PINN) for the approximation of (differential, nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive way to formalize a specific problem and solve it using PINN. The approximated solution of a differential equation can be implemented using PINA in a few lines of code thanks to the intuitive and user-friendly interface.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Physic Informed Neural networks for Advance modeling.",
"version": "0.1.2.post2411",
"project_urls": {
"Homepage": "https://github.com/mathLab/PINA"
},
"split_keywords": [
"machine-learning",
"deep-learning",
"modeling",
"pytorch",
"ode",
"neural-networks",
"differential-equations",
"pde",
"hacktoberfest",
"pinn",
"physics-informed",
"physics-informed-neural-networks",
"neural-operators",
"equation-learning",
"lightining"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a2fa340db8a5d338c4196a6c8d77d1380ec24cf057635c3242bd17cc0e0add69",
"md5": "e2ca67edae915cdadec45a5c41edc033",
"sha256": "e1607ea8060a14beab67d96e0a8f3f345e3ea14a07018e07bc64dc71eda0a7ef"
},
"downloads": -1,
"filename": "pina_mathlab-0.1.2.post2411-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e2ca67edae915cdadec45a5c41edc033",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 134960,
"upload_time": "2024-11-01T03:15:56",
"upload_time_iso_8601": "2024-11-01T03:15:56.782278Z",
"url": "https://files.pythonhosted.org/packages/a2/fa/340db8a5d338c4196a6c8d77d1380ec24cf057635c3242bd17cc0e0add69/pina_mathlab-0.1.2.post2411-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7f69949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106",
"md5": "42882d3f2a962d552a9d75dc261a981e",
"sha256": "82884d2fa2a667d97b00aad2436006a01af3df316668120bfae1312c341ffb2f"
},
"downloads": -1,
"filename": "pina-mathlab-0.1.2.post2411.tar.gz",
"has_sig": false,
"md5_digest": "42882d3f2a962d552a9d75dc261a981e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 97345,
"upload_time": "2024-11-01T03:15:57",
"upload_time_iso_8601": "2024-11-01T03:15:57.945192Z",
"url": "https://files.pythonhosted.org/packages/7f/69/949c16793fc02c193c3a74e04e02c9bcd696524181c0546bbaf0412e0106/pina-mathlab-0.1.2.post2411.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-01 03:15:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mathLab",
"github_project": "PINA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pina-mathlab"
}