piqa


Namepiqa JSON
Version 1.3.2 PyPI version JSON
download
home_page
SummaryPyTorch Image Quality Assessment
upload_time2023-10-30 10:17:09
maintainer
docs_urlNone
authorFrançois Rozet
requires_python>=3.8
license
keywords torch vision image quality metrics
VCS
bugtrack_url
requirements torch torchvision
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center"><img src="https://raw.githubusercontent.com/francois-rozet/piqa/master/docs/images/banner.svg" width="80%"></p>

# PyTorch Image Quality Assessment

PIQA is a collection of PyTorch metrics for image quality assessment in various image processing tasks such as generation, denoising, super-resolution, interpolation, etc. It focuses on the efficiency, conciseness and understandability of its (sub-)modules, such that anyone can easily reuse and/or adapt them to its needs.

> PIQA should be pronounced *pika* (like Pikachu ⚡️)

## Installation

The `piqa` package is available on [PyPI](https://pypi.org/project/piqa), which means it is installable via `pip`.

```
pip install piqa
```

Alternatively, if you need the latest features, you can install it from the repository.

```
pip install git+https://github.com/francois-rozet/piqa
```

## Getting started

In `piqa`, each metric is associated to a class, child of `torch.nn.Module`, which has to be instantiated to evaluate the metric. All metrics are differentiable and support CPU and GPU (CUDA).

```python
import torch
import piqa

# PSNR
x = torch.rand(5, 3, 256, 256)
y = torch.rand(5, 3, 256, 256)

psnr = piqa.PSNR()
l = psnr(x, y)

# SSIM
x = torch.rand(5, 3, 256, 256, requires_grad=True).cuda()
y = torch.rand(5, 3, 256, 256).cuda()

ssim = piqa.SSIM().cuda()
l = 1 - ssim(x, y)
l.backward()
```

Like `torch.nn` built-in components, these classes are based on functional definitions of the metrics, which are less user-friendly, but more versatile.

```python
from piqa.ssim import ssim
from piqa.utils.functional import gaussian_kernel

kernel = gaussian_kernel(11, sigma=1.5).repeat(3, 1, 1)
ss, cs = ssim(x, y, kernel=kernel)
```

For more information, check out the documentation at [piqa.readthedocs.io](https://piqa.readthedocs.io).

### Available metrics

| Class     | Range  | Objective | Year | Metric                                                                                               |
|:---------:|:------:|:---------:|:----:|------------------------------------------------------------------------------------------------------|
| `TV`      | [0, ∞] | /         | 1937 | [Total Variation](https://en.wikipedia.org/wiki/Total_variation)                                     |
| `PSNR`    | [0, ∞] | max       | /    | [Peak Signal-to-Noise Ratio](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio)               |
| `SSIM`    | [0, 1] | max       | 2004 | [Structural Similarity](https://en.wikipedia.org/wiki/Structural_similarity)                         |
| `MS_SSIM` | [0, 1] | max       | 2004 | [Multi-Scale Structural Similarity](https://ieeexplore.ieee.org/document/1292216/)                   |
| `LPIPS`   | [0, ∞] | min       | 2018 | [Learned Perceptual Image Patch Similarity](https://arxiv.org/abs/1801.03924)                        |
| `GMSD`    | [0, ∞] | min       | 2013 | [Gradient Magnitude Similarity Deviation](https://arxiv.org/abs/1308.3052)                           |
| `MS_GMSD` | [0, ∞] | min       | 2017 | [Multi-Scale Gradient Magnitude Similarity Deviation](https://ieeexplore.ieee.org/document/7952357)  |
| `MDSI`    | [0, ∞] | min       | 2016 | [Mean Deviation Similarity Index](https://arxiv.org/abs/1608.07433)                                  |
| `HaarPSI` | [0, 1] | max       | 2018 | [Haar Perceptual Similarity Index](https://arxiv.org/abs/1607.06140)                                 |
| `VSI`     | [0, 1] | max       | 2014 | [Visual Saliency-based Index](https://ieeexplore.ieee.org/document/6873260)                          |
| `FSIM`    | [0, 1] | max       | 2011 | [Feature Similarity](https://ieeexplore.ieee.org/document/5705575)                                   |
| `FID`     | [0, ∞] | min       | 2017 | [Fréchet Inception Distance](https://arxiv.org/abs/1706.08500)                                       |

### Tracing

All metrics of `piqa` support [PyTorch's tracing](https://pytorch.org/docs/stable/generated/torch.jit.trace.html), which optimizes their execution, especially on GPU.

```python
ssim = piqa.SSIM().cuda()
ssim_traced = torch.jit.trace(ssim, (x, y))

l = 1 - ssim_traced(x, y)  # should be faster ¯\_(ツ)_/¯
```

### Assert

PIQA uses type assertions to raise meaningful messages when a metric doesn't receive an input of the expected type. This feature eases a lot early prototyping and debugging, but it might hurt a little the performances. If you need the absolute best performances, the assertions can be disabled with the Python flag [`-O`](https://docs.python.org/3/using/cmdline.html#cmdoption-o). For example,

```
python -O your_awesome_code_using_piqa.py
```

Alternatively, you can disable PIQA's type assertions within your code with

```python
piqa.utils.set_debug(False)
```

## Contributing

If you have a question, an issue or would like to contribute, please read our [contributing guidelines](https://github.com/francois-rozet/piqa/blob/master/CONTRIBUTING.md).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "piqa",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "torch,vision,image,quality,metrics",
    "author": "Fran\u00e7ois Rozet",
    "author_email": "francois.rozet@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/e9/ab/f0b2461b7d9d184c6c20cc1ce459471614af63879d50b9dd11150c791bd2/piqa-1.3.2.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img src=\"https://raw.githubusercontent.com/francois-rozet/piqa/master/docs/images/banner.svg\" width=\"80%\"></p>\n\n# PyTorch Image Quality Assessment\n\nPIQA is a collection of PyTorch metrics for image quality assessment in various image processing tasks such as generation, denoising, super-resolution, interpolation, etc. It focuses on the efficiency, conciseness and understandability of its (sub-)modules, such that anyone can easily reuse and/or adapt them to its needs.\n\n> PIQA should be pronounced *pika* (like Pikachu \u26a1\ufe0f)\n\n## Installation\n\nThe `piqa` package is available on [PyPI](https://pypi.org/project/piqa), which means it is installable via `pip`.\n\n```\npip install piqa\n```\n\nAlternatively, if you need the latest features, you can install it from the repository.\n\n```\npip install git+https://github.com/francois-rozet/piqa\n```\n\n## Getting started\n\nIn `piqa`, each metric is associated to a class, child of `torch.nn.Module`, which has to be instantiated to evaluate the metric. All metrics are differentiable and support CPU and GPU (CUDA).\n\n```python\nimport torch\nimport piqa\n\n# PSNR\nx = torch.rand(5, 3, 256, 256)\ny = torch.rand(5, 3, 256, 256)\n\npsnr = piqa.PSNR()\nl = psnr(x, y)\n\n# SSIM\nx = torch.rand(5, 3, 256, 256, requires_grad=True).cuda()\ny = torch.rand(5, 3, 256, 256).cuda()\n\nssim = piqa.SSIM().cuda()\nl = 1 - ssim(x, y)\nl.backward()\n```\n\nLike `torch.nn` built-in components, these classes are based on functional definitions of the metrics, which are less user-friendly, but more versatile.\n\n```python\nfrom piqa.ssim import ssim\nfrom piqa.utils.functional import gaussian_kernel\n\nkernel = gaussian_kernel(11, sigma=1.5).repeat(3, 1, 1)\nss, cs = ssim(x, y, kernel=kernel)\n```\n\nFor more information, check out the documentation at [piqa.readthedocs.io](https://piqa.readthedocs.io).\n\n### Available metrics\n\n| Class     | Range  | Objective | Year | Metric                                                                                               |\n|:---------:|:------:|:---------:|:----:|------------------------------------------------------------------------------------------------------|\n| `TV`      | [0, \u221e] | /         | 1937 | [Total Variation](https://en.wikipedia.org/wiki/Total_variation)                                     |\n| `PSNR`    | [0, \u221e] | max       | /    | [Peak Signal-to-Noise Ratio](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio)               |\n| `SSIM`    | [0, 1] | max       | 2004 | [Structural Similarity](https://en.wikipedia.org/wiki/Structural_similarity)                         |\n| `MS_SSIM` | [0, 1] | max       | 2004 | [Multi-Scale Structural Similarity](https://ieeexplore.ieee.org/document/1292216/)                   |\n| `LPIPS`   | [0, \u221e] | min       | 2018 | [Learned Perceptual Image Patch Similarity](https://arxiv.org/abs/1801.03924)                        |\n| `GMSD`    | [0, \u221e] | min       | 2013 | [Gradient Magnitude Similarity Deviation](https://arxiv.org/abs/1308.3052)                           |\n| `MS_GMSD` | [0, \u221e] | min       | 2017 | [Multi-Scale Gradient Magnitude Similarity Deviation](https://ieeexplore.ieee.org/document/7952357)  |\n| `MDSI`    | [0, \u221e] | min       | 2016 | [Mean Deviation Similarity Index](https://arxiv.org/abs/1608.07433)                                  |\n| `HaarPSI` | [0, 1] | max       | 2018 | [Haar Perceptual Similarity Index](https://arxiv.org/abs/1607.06140)                                 |\n| `VSI`     | [0, 1] | max       | 2014 | [Visual Saliency-based Index](https://ieeexplore.ieee.org/document/6873260)                          |\n| `FSIM`    | [0, 1] | max       | 2011 | [Feature Similarity](https://ieeexplore.ieee.org/document/5705575)                                   |\n| `FID`     | [0, \u221e] | min       | 2017 | [Fr\u00e9chet Inception Distance](https://arxiv.org/abs/1706.08500)                                       |\n\n### Tracing\n\nAll metrics of `piqa` support [PyTorch's tracing](https://pytorch.org/docs/stable/generated/torch.jit.trace.html), which optimizes their execution, especially on GPU.\n\n```python\nssim = piqa.SSIM().cuda()\nssim_traced = torch.jit.trace(ssim, (x, y))\n\nl = 1 - ssim_traced(x, y)  # should be faster \u00af\\_(\u30c4)_/\u00af\n```\n\n### Assert\n\nPIQA uses type assertions to raise meaningful messages when a metric doesn't receive an input of the expected type. This feature eases a lot early prototyping and debugging, but it might hurt a little the performances. If you need the absolute best performances, the assertions can be disabled with the Python flag [`-O`](https://docs.python.org/3/using/cmdline.html#cmdoption-o). For example,\n\n```\npython -O your_awesome_code_using_piqa.py\n```\n\nAlternatively, you can disable PIQA's type assertions within your code with\n\n```python\npiqa.utils.set_debug(False)\n```\n\n## Contributing\n\nIf you have a question, an issue or would like to contribute, please read our [contributing guidelines](https://github.com/francois-rozet/piqa/blob/master/CONTRIBUTING.md).\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "PyTorch Image Quality Assessment",
    "version": "1.3.2",
    "project_urls": {
        "Documentation": "https://piqa.readthedocs.io",
        "Source": "https://github.com/francois-rozet/piqa",
        "Tracker": "https://github.com/francois-rozet/piqa/issues"
    },
    "split_keywords": [
        "torch",
        "vision",
        "image",
        "quality",
        "metrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c9b81bb688ce6f31c00af4ea69277932bf6861ab6db41c6b2f02303756508478",
                "md5": "ea37edf17ed924e4cce0f665b97537d6",
                "sha256": "a8b605a64877622a9ac8b300a695824e9f878faeddf9b9a69d39ea281f763fd0"
            },
            "downloads": -1,
            "filename": "piqa-1.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ea37edf17ed924e4cce0f665b97537d6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 32069,
            "upload_time": "2023-10-30T10:17:07",
            "upload_time_iso_8601": "2023-10-30T10:17:07.597724Z",
            "url": "https://files.pythonhosted.org/packages/c9/b8/1bb688ce6f31c00af4ea69277932bf6861ab6db41c6b2f02303756508478/piqa-1.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e9abf0b2461b7d9d184c6c20cc1ce459471614af63879d50b9dd11150c791bd2",
                "md5": "4a4f64cb817e415acaa6542409689e59",
                "sha256": "354aff428a1b69ceda26870e4a6d128c67ce75b6ff7ce4cf07d9a309b2ce681f"
            },
            "downloads": -1,
            "filename": "piqa-1.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4a4f64cb817e415acaa6542409689e59",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 23929,
            "upload_time": "2023-10-30T10:17:09",
            "upload_time_iso_8601": "2023-10-30T10:17:09.439543Z",
            "url": "https://files.pythonhosted.org/packages/e9/ab/f0b2461b7d9d184c6c20cc1ce459471614af63879d50b9dd11150c791bd2/piqa-1.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-30 10:17:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "francois-rozet",
    "github_project": "piqa",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.12.0"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">=",
                    "0.13.0"
                ]
            ]
        }
    ],
    "lcname": "piqa"
}
        
Elapsed time: 0.16780s