<div align="center">
<img src="https://raw.githubusercontent.com/pixano/pixano/main/docs/assets/pixano_wide.png" alt="Pixano" height="100"/>
<br/>
<br/>
**Data-centric AI building blocks for computer vision applications**
**_Under active development, subject to API change_**
[](https://github.com/pixano/pixano/releases)
[](https://pypi.org/project/pixano/)
[](https://github.com/pixano/pixano/actions/workflows/test_back.yml)
[](https://codecov.io/github/pixano/pixano)
[](https://pixano.github.io)
[](https://www.python.org/downloads/)
[](LICENSE)
</div>
<hr />
Pixano is an open-source tool by CEA List for exploring and annotating your dataset using AI features:
- **Fast dataset navigation** using the the modern storage format _Lance_
- **Multi-view datasets** support for images, and soon for _3D point clouds_ and _videos_
- **Import and export** support for dataset formats like _COCO_
- **Semantic search** using models like _CLIP_
- **Smart segmentation** using models like _SAM_
# Getting started
## Installing Pixano
As Pixano requires specific versions for its dependencies, we recommend creating a new Python virtual environment to install it.
For example, with <a href="https://conda.io/projects/conda/en/latest/user-guide/install/index.html" target="_blank">conda</a>:
```shell
conda create -n pixano_env python=3.10
conda activate pixano_env
```
Then, you can install the Pixano package inside that environment with pip:
```shell
pip install pixano
```
## Using your datasets
Please refer to our Jupyter notebooks for <a href="https://github.com/pixano/pixano/blob/main/notebooks/datasets/import_dataset.ipynb" target="_blank">importing</a> and <a href="https://github.com/pixano/pixano/blob/main/notebooks/datasets/export_dataset.ipynb" target="_blank">exporting</a> your datasets.
## Using the Pixano app
Please refer to this link for using the <a href="https://github.com/pixano/pixano/tree/main/pixano/app/README.md" target="_blank">Pixano app</a>.
# Contributing
Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) for information on running Pixano locally and guidelines on how to publish your contributions.
# License
Pixano is licensed under the [CeCILL-C license](LICENSE).
Raw data
{
"_id": null,
"home_page": null,
"name": "pixano",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.10",
"maintainer_email": null,
"keywords": "computer vision, data annotation, data visualization, deep learning, machine learning",
"author": null,
"author_email": "Pixano Developers <pixano@cea.fr>",
"download_url": "https://files.pythonhosted.org/packages/11/37/f9aec0d712fc573ad4b6f3c6e24143c68bbc496fb1a41ade8fd664fe1a0b/pixano-0.6.4.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n\n<img src=\"https://raw.githubusercontent.com/pixano/pixano/main/docs/assets/pixano_wide.png\" alt=\"Pixano\" height=\"100\"/>\n\n<br/>\n<br/>\n\n**Data-centric AI building blocks for computer vision applications**\n\n**_Under active development, subject to API change_**\n\n[](https://github.com/pixano/pixano/releases)\n[](https://pypi.org/project/pixano/)\n[](https://github.com/pixano/pixano/actions/workflows/test_back.yml)\n[](https://codecov.io/github/pixano/pixano)\n[](https://pixano.github.io)\n[](https://www.python.org/downloads/)\n[](LICENSE)\n\n</div>\n\n<hr />\n\nPixano is an open-source tool by CEA List for exploring and annotating your dataset using AI features:\n\n- **Fast dataset navigation** using the the modern storage format _Lance_\n- **Multi-view datasets** support for images, and soon for _3D point clouds_ and _videos_\n- **Import and export** support for dataset formats like _COCO_\n- **Semantic search** using models like _CLIP_\n- **Smart segmentation** using models like _SAM_\n\n# Getting started\n\n## Installing Pixano\n\nAs Pixano requires specific versions for its dependencies, we recommend creating a new Python virtual environment to install it.\n\nFor example, with <a href=\"https://conda.io/projects/conda/en/latest/user-guide/install/index.html\" target=\"_blank\">conda</a>:\n\n```shell\nconda create -n pixano_env python=3.10\nconda activate pixano_env\n```\n\nThen, you can install the Pixano package inside that environment with pip:\n\n```shell\npip install pixano\n```\n\n## Using your datasets\n\nPlease refer to our Jupyter notebooks for <a href=\"https://github.com/pixano/pixano/blob/main/notebooks/datasets/import_dataset.ipynb\" target=\"_blank\">importing</a> and <a href=\"https://github.com/pixano/pixano/blob/main/notebooks/datasets/export_dataset.ipynb\" target=\"_blank\">exporting</a> your datasets.\n\n## Using the Pixano app\n\nPlease refer to this link for using the <a href=\"https://github.com/pixano/pixano/tree/main/pixano/app/README.md\" target=\"_blank\">Pixano app</a>.\n\n# Contributing\n\nPlease refer to the [CONTRIBUTING.md](CONTRIBUTING.md) for information on running Pixano locally and guidelines on how to publish your contributions.\n\n# License\n\nPixano is licensed under the [CeCILL-C license](LICENSE).\n",
"bugtrack_url": null,
"license": null,
"summary": "Data-centric AI building blocks for computer vision applications",
"version": "0.6.4",
"project_urls": {
"Documentation": "https://github.com/pixano/pixano#readme",
"Issues": "https://github.com/pixano/pixano/issues",
"Source": "https://github.com/pixano/pixano"
},
"split_keywords": [
"computer vision",
" data annotation",
" data visualization",
" deep learning",
" machine learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8d26303e52e9d5462bc923ea8dcb4ee0a0614ff740bd98f8120702a375018d16",
"md5": "9160c40cc99b8f5f1019acb66b1be503",
"sha256": "2f18c8dbd3e908cb9f5a91179eeb256b7b82642a845c52f24fcc2dbbc7c86687"
},
"downloads": -1,
"filename": "pixano-0.6.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9160c40cc99b8f5f1019acb66b1be503",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.10",
"size": 868912,
"upload_time": "2025-02-02T17:52:30",
"upload_time_iso_8601": "2025-02-02T17:52:30.920354Z",
"url": "https://files.pythonhosted.org/packages/8d/26/303e52e9d5462bc923ea8dcb4ee0a0614ff740bd98f8120702a375018d16/pixano-0.6.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1137f9aec0d712fc573ad4b6f3c6e24143c68bbc496fb1a41ade8fd664fe1a0b",
"md5": "bbfa408beb2162fcd46e88a367e02781",
"sha256": "ac6d4d4c1370d86283e959181e850ad11773bd80194263f1739c598590f3bb45"
},
"downloads": -1,
"filename": "pixano-0.6.4.tar.gz",
"has_sig": false,
"md5_digest": "bbfa408beb2162fcd46e88a367e02781",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.10",
"size": 798366,
"upload_time": "2025-02-02T17:52:32",
"upload_time_iso_8601": "2025-02-02T17:52:32.882730Z",
"url": "https://files.pythonhosted.org/packages/11/37/f9aec0d712fc573ad4b6f3c6e24143c68bbc496fb1a41ade8fd664fe1a0b/pixano-0.6.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-02 17:52:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pixano",
"github_project": "pixano#readme",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pixano"
}