<!---
# =================================
# Copyright: CEA-LIST/DIASI/SIALV
# Author : pixano@cea.fr
# License: CECILL-C
# =================================
--->
<div align="center">
<img src="https://raw.githubusercontent.com/pixano/pixano/main/docs/assets/pixano_wide.png" alt="Pixano" height="100"/>
<br/>
<br/>
**Pixano-Inference is an open-source inference library for Pixano.**
**_Under active development, subject to API change_**
[](https://github.com/pixano/pixano-inference/releases)
[](https://pypi.org/project/pixano-inference/)
[](https://github.com/pixano/pixano-inference/actions/workflows/test_back.yml)
[](https://pixano.github.io)
[](https://www.python.org/downloads/)
[](LICENSE)
</div>
<hr />
# Pixano-Inference
## Context
This library aims to provide a common ecosystem to launch inference for various Artificial Intelligence tasks from different providers (Open-AI, transformers, sam2, ...). It has first been implemented to work in par with the [Pixano](https://pixano.github.io/pixano/latest/) AI-powered annotation tool.
## Installation
To install the library, simply execute the following command
```bash
pip install pixano-inference
```
If you want to dynamically make changes to the library to develop and test, make a dev install by cloning the repo and executing the following commands
```bash
cd pixano-inference
pip install -e .
```
## Usage
Look at the [documentation](https://pixano.github.io/pixano-inference/latest/) to use Pixano-Inference.
## License
Pixano-Inference is released under the terms of the [CeCILL-C license](LICENSE).
Raw data
{
"_id": null,
"home_page": null,
"name": "pixano-inference",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.14,>=3.10",
"maintainer_email": null,
"keywords": "computer vision, deep learning, inference, machine learning, natural language processing, nlp, pytorch",
"author": null,
"author_email": "Julien Denize <julien.denize@cea.fr>",
"download_url": "https://files.pythonhosted.org/packages/e1/86/1c6d87235d11b1c899aaa66e5d726f4fff79f163fd76af1e13a007eecb96/pixano_inference-0.4.0.tar.gz",
"platform": null,
"description": "<!---\n# =================================\n# Copyright: CEA-LIST/DIASI/SIALV\n# Author : pixano@cea.fr\n# License: CECILL-C\n# =================================\n--->\n\n<div align=\"center\">\n\n<img src=\"https://raw.githubusercontent.com/pixano/pixano/main/docs/assets/pixano_wide.png\" alt=\"Pixano\" height=\"100\"/>\n\n<br/>\n<br/>\n\n**Pixano-Inference is an open-source inference library for Pixano.**\n\n**_Under active development, subject to API change_**\n\n[](https://github.com/pixano/pixano-inference/releases)\n[](https://pypi.org/project/pixano-inference/)\n[](https://github.com/pixano/pixano-inference/actions/workflows/test_back.yml)\n[](https://pixano.github.io)\n[](https://www.python.org/downloads/)\n[](LICENSE)\n\n</div>\n\n<hr />\n\n# Pixano-Inference\n\n## Context\n\nThis library aims to provide a common ecosystem to launch inference for various Artificial Intelligence tasks from different providers (Open-AI, transformers, sam2, ...). It has first been implemented to work in par with the [Pixano](https://pixano.github.io/pixano/latest/) AI-powered annotation tool.\n\n## Installation\n\nTo install the library, simply execute the following command\n\n```bash\npip install pixano-inference\n```\n\nIf you want to dynamically make changes to the library to develop and test, make a dev install by cloning the repo and executing the following commands\n\n```bash\ncd pixano-inference\npip install -e .\n```\n\n## Usage\n\nLook at the [documentation](https://pixano.github.io/pixano-inference/latest/) to use Pixano-Inference.\n\n## License\n\nPixano-Inference is released under the terms of the [CeCILL-C license](LICENSE).\n",
"bugtrack_url": null,
"license": null,
"summary": "Deploy inference models served for Artificial Intelligence solutions including but not limited to Pixano.",
"version": "0.4.0",
"project_urls": {
"Bug Tracker": "http://is154588.intra.cea.fr/pixano/pixano-inference/issues",
"Download": "http://is154588.intra.cea.fr/pixano/pixano-inference",
"Homepage": "http://is154588.intra.cea.fr/pixano/pixano-inference",
"Source Code": "http://is154588.intra.cea.fr/pixano/pixano-inference"
},
"split_keywords": [
"computer vision",
" deep learning",
" inference",
" machine learning",
" natural language processing",
" nlp",
" pytorch"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "4bce538ce4ff6a5b46e72288640c6fd32b6b8f19df7d776e1c96b14cd92f7d82",
"md5": "c0b1955ee42b7569d6ca97c6f1858ce1",
"sha256": "61368e03c56d21f596cb669b6706fa799d1f8937474df84424f08b12ef93560c"
},
"downloads": -1,
"filename": "pixano_inference-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c0b1955ee42b7569d6ca97c6f1858ce1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.14,>=3.10",
"size": 57939,
"upload_time": "2025-02-18T15:35:03",
"upload_time_iso_8601": "2025-02-18T15:35:03.892069Z",
"url": "https://files.pythonhosted.org/packages/4b/ce/538ce4ff6a5b46e72288640c6fd32b6b8f19df7d776e1c96b14cd92f7d82/pixano_inference-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e1861c6d87235d11b1c899aaa66e5d726f4fff79f163fd76af1e13a007eecb96",
"md5": "933865ceed3a43f25f61e0f7392e8a2e",
"sha256": "89ba215f7003f06d41b35cd64c34e1d7e21e2db7bb12a6522bf68ad0e35b2c9d"
},
"downloads": -1,
"filename": "pixano_inference-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "933865ceed3a43f25f61e0f7392e8a2e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.14,>=3.10",
"size": 92265,
"upload_time": "2025-02-18T15:35:05",
"upload_time_iso_8601": "2025-02-18T15:35:05.483017Z",
"url": "https://files.pythonhosted.org/packages/e1/86/1c6d87235d11b1c899aaa66e5d726f4fff79f163fd76af1e13a007eecb96/pixano_inference-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-18 15:35:05",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pixano-inference"
}