<div align="center">
<img src="https://raw.githubusercontent.com/pixano/pixano-inference/main/docs/assets/pixano_wide.png" alt="Pixano" height="100"/>
<br/>
**Inference models for Pixano**
**_Under active development, subject to API change_**
[![GitHub version](https://img.shields.io/github/v/release/pixano/pixano-inference?label=release&logo=github)](https://github.com/pixano/pixano-inference/releases)
[![PyPI version](https://img.shields.io/pypi/v/pixano-inference?color=blue&label=release&logo=pypi&logoColor=white)](https://pypi.org/project/pixano-inference/)
[![Documentation](https://img.shields.io/website?url=https%3A%2F%2Fpixano.github.io%2F&up_message=online&down_message=offline&label=docs)](https://pixano.github.io)
[![Python version](https://img.shields.io/pypi/pyversions/pixano?color=important&logo=python&logoColor=white)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/license-CeCILL--C-blue.svg)](LICENSE)
</div>
<hr />
<a href="https://github.com/pixano/pixano" target="_blank">**Pixano**</a> is an open-source tool by CEA List for exploring and annotating your dataset using AI features like **smart segmentation** and **semantic search**.
**Pixano Inference** provides the AI models like _SAM_ and _CLIP_ that power those features, as well as a PyTorch and TensorFlow models for pre-annotating your datasets.
# Getting started
## Installing Pixano Inference
As Pixano and Pixano Inference require specific versions for their dependencies, we recommend creating a new Python virtual environment to install them.
For example, with <a href="https://conda.io/projects/conda/en/latest/user-guide/install/index.html" target="_blank">conda</a>:
```shell
conda create -n pixano_env python=3.10
conda activate pixano_env
```
Then, you can install Pixano Inference inside that environment with pip:
```shell
pip install pixano-inference
```
As it is a requirement of Pixano Inference, Pixano will automatically be downloaded if it is not already installed.
## Using the models
Please refer to <a href="https://github.com/pixano/pixano/tree/main/notebooks/models" target="_blank">these notebooks</a> for information on how to use the models provided by Pixano Inference.
# Contributing
Please refer to the [CONTRIBUTING.md](CONTRIBUTING.md) for information on running Pixano locally and guidelines on how to publish your contributions.
# License
Pixano Inference is licensed under the [CeCILL-C license](LICENSE).
Raw data
{
"_id": null,
"home_page": "",
"name": "pixano-inference",
"maintainer": "",
"docs_url": null,
"requires_python": "~=3.10",
"maintainer_email": "",
"keywords": "computer vision,data annotation,data visualization,deep learning,machine learning",
"author": "",
"author_email": "Pixano Developers <pixano@cea.fr>",
"download_url": "https://files.pythonhosted.org/packages/a1/d0/7528830bba5d729c8ea07e9b98ebe236b221e52c3d3ccceee42d671249e5/pixano_inference-0.3.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n\n<img src=\"https://raw.githubusercontent.com/pixano/pixano-inference/main/docs/assets/pixano_wide.png\" alt=\"Pixano\" height=\"100\"/>\n\n<br/>\n\n**Inference models for Pixano**\n\n**_Under active development, subject to API change_**\n\n[![GitHub version](https://img.shields.io/github/v/release/pixano/pixano-inference?label=release&logo=github)](https://github.com/pixano/pixano-inference/releases)\n[![PyPI version](https://img.shields.io/pypi/v/pixano-inference?color=blue&label=release&logo=pypi&logoColor=white)](https://pypi.org/project/pixano-inference/)\n[![Documentation](https://img.shields.io/website?url=https%3A%2F%2Fpixano.github.io%2F&up_message=online&down_message=offline&label=docs)](https://pixano.github.io)\n[![Python version](https://img.shields.io/pypi/pyversions/pixano?color=important&logo=python&logoColor=white)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/license-CeCILL--C-blue.svg)](LICENSE)\n\n</div>\n\n<hr />\n\n<a href=\"https://github.com/pixano/pixano\" target=\"_blank\">**Pixano**</a> is an open-source tool by CEA List for exploring and annotating your dataset using AI features like **smart segmentation** and **semantic search**.\n\n**Pixano Inference** provides the AI models like _SAM_ and _CLIP_ that power those features, as well as a PyTorch and TensorFlow models for pre-annotating your datasets.\n\n# Getting started\n\n## Installing Pixano Inference\n\nAs Pixano and Pixano Inference require specific versions for their dependencies, we recommend creating a new Python virtual environment to install them.\n\nFor example, with <a href=\"https://conda.io/projects/conda/en/latest/user-guide/install/index.html\" target=\"_blank\">conda</a>:\n\n```shell\nconda create -n pixano_env python=3.10\nconda activate pixano_env\n```\n\nThen, you can install Pixano Inference inside that environment with pip:\n\n```shell\npip install pixano-inference\n```\n\nAs it is a requirement of Pixano Inference, Pixano will automatically be downloaded if it is not already installed.\n\n## Using the models\n\nPlease refer to <a href=\"https://github.com/pixano/pixano/tree/main/notebooks/models\" target=\"_blank\">these notebooks</a> for information on how to use the models provided by Pixano Inference.\n\n# Contributing\n\nPlease refer to the [CONTRIBUTING.md](CONTRIBUTING.md) for information on running Pixano locally and guidelines on how to publish your contributions.\n\n# License\n\nPixano Inference is licensed under the [CeCILL-C license](LICENSE).\n",
"bugtrack_url": null,
"license": "",
"summary": "Inference models for Pixano, data-centric AI building blocks for computer vision applications",
"version": "0.3.1",
"project_urls": {
"Documentation": "https://github.com/pixano/pixano-inference#readme",
"Issues": "https://github.com/pixano/pixano-inference/issues",
"Source": "https://github.com/pixano/pixano-inference"
},
"split_keywords": [
"computer vision",
"data annotation",
"data visualization",
"deep learning",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2bebc3b947374ff0ed26620b3a3a52cbd02d988dbdee692c080297f4dbd5b31e",
"md5": "2bb4c3f183589d7ccae928ae3fde6641",
"sha256": "72f0d487abb3f0fd7d3d0225f2fc39d5674d4bdcf870192559e27f47361a26b2"
},
"downloads": -1,
"filename": "pixano_inference-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2bb4c3f183589d7ccae928ae3fde6641",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "~=3.10",
"size": 33160,
"upload_time": "2024-03-18T10:26:19",
"upload_time_iso_8601": "2024-03-18T10:26:19.985581Z",
"url": "https://files.pythonhosted.org/packages/2b/eb/c3b947374ff0ed26620b3a3a52cbd02d988dbdee692c080297f4dbd5b31e/pixano_inference-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a1d07528830bba5d729c8ea07e9b98ebe236b221e52c3d3ccceee42d671249e5",
"md5": "aee702f13b28e37d43c746d45ce67ad9",
"sha256": "faac96fa9945fb002d851f525d11061605812f426ff7bd6caa60ec377aa65094"
},
"downloads": -1,
"filename": "pixano_inference-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "aee702f13b28e37d43c746d45ce67ad9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "~=3.10",
"size": 16159,
"upload_time": "2024-03-18T10:26:21",
"upload_time_iso_8601": "2024-03-18T10:26:21.760844Z",
"url": "https://files.pythonhosted.org/packages/a1/d0/7528830bba5d729c8ea07e9b98ebe236b221e52c3d3ccceee42d671249e5/pixano_inference-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-18 10:26:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pixano",
"github_project": "pixano-inference#readme",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pixano-inference"
}