Name | pixelle-mcp JSON |
Version |
0.1.3
JSON |
| download |
home_page | None |
Summary | Pixelle MCP: Convert ComfyUI workflows into MCP Tools with a single command, providing an MCP server and a Chainlit-based web UI. |
upload_time | 2025-09-01 08:25:07 |
maintainer | None |
docs_url | None |
author | AIDC-AI |
requires_python | >=3.11 |
license | MIT |
keywords |
aigc
chainlit
comfyui
llm
mcp
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<h1 align="center">π¨ Pixelle MCP - Omnimodal Agent Framework</h1>
<p align="center"><b>English</b> | <a href="README_CN.md">δΈζ</a></p>
<p align="center">β¨ An AIGC solution based on the MCP protocol, seamlessly converting ComfyUI workflows into MCP tools with zero code, empowering LLM and ComfyUI integration.</p>

https://github.com/user-attachments/assets/65422cef-96f9-44fe-a82b-6a124674c417
## π Recent Updates
- β
**2025-08-12**: Integrated the LiteLLM framework, adding multi-model support for Gemini, DeepSeek, Claude, Qwen, and more
## π Features
- β
π **Full-modal Support**: Supports TISV (Text, Image, Sound/Speech, Video) full-modal conversion and generation
- β
π§© **ComfyUI Ecosystem**: Server-side is built on [ComfyUI](https://github.com/comfyanonymous/ComfyUI), inheriting all capabilities from the open ComfyUI ecosystem
- β
π§ **Zero-code Development**: Defines and implements the Workflow-as-MCP Tool solution, enabling zero-code development and dynamic addition of new MCP Tools
- β
ποΈ **MCP Server**: Server provides functionality based on the [MCP](https://modelcontextprotocol.io/introduction) protocol, supporting integration with any MCP client (including but not limited to Cursor, Claude Desktop, etc.)
- β
π **MCP Client**: Client is developed based on the [Chainlit](https://github.com/Chainlit/chainlit) framework, inheriting Chainlit's UI controls and supporting integration with more MCP Servers
- β
π **Flexible Deployment**: Supports standalone deployment of Server-side only as MCP Server, or standalone deployment of Client-side only as MCP Client, or combined deployment
- β
βοΈ **Unified Configuration**: Uses YAML configuration scheme, one config file manages all services
- β
π€ **Multi-LLM Support**: Supports multiple mainstream LLMs, including OpenAI, Ollama, Gemini, DeepSeek, Claude, Qwen, and more
## π Project Structure
- **mcp-base**: π§ Basic service, provides file storage and shared service capabilities
- **mcp-client**: π MCP client, a web interface built on Chainlit
- **mcp-server**: ποΈ MCP server, provides various AIGC tools and services

## πββοΈ Quick Start
### π₯ 1. Clone the Source Code & Configure Services
#### π¦ 1.1 Clone the Source Code
```shell
git clone https://github.com/AIDC-AI/Pixelle-MCP.git
cd Pixelle-MCP
```
#### βοΈ 1.2 Configure Services
The project uses a unified YAML configuration scheme:
```shell
# Copy the configuration example file
cp config.yml.example config.yml
# Edit configuration items as needed
```
**π Detailed Configuration Instructions:**
The configuration file contains three main sections: Basic Service, MCP Server, and MCP Client. Each section has detailed configuration item descriptions in [`config.yml.example`](config.yml.example).
**π Configuration Checklist:**
- β
Copied `config.yml.example` to `config.yml`
- β
Configured ComfyUI service address (ensure ComfyUI is running)
- β
Configured at least one LLM model (OpenAI or Ollama)
- β
Port numbers are not occupied by other services (9001, 9002, 9003)
### π§ 2. Add MCP Tool (Optional)
This step is optional and only affects your Agent's capabilities. You can skip it if not needed for now.
The `mcp-server/workflows` directory contains a set of popular workflows by default. Run the following command to copy them to your mcp-server. When the service starts, they will be automatically converted into MCP Tools for LLM use.
**Note: It is strongly recommended to test the workflow in your ComfyUI canvas before copying, to ensure smooth execution later.**
```shell
cp -r pixelle/workflows/* pixelle/data/custom_workflows/
```
### π 3. Start the Services
#### π― 3.1 Start with Docker (Recommended)
```shell
# Start all services
docker compose up -d
```
#### π οΈ 3.2 One-click Script Start
Requires [uv](https://docs.astral.sh/uv/getting-started/installation/) environment.
**Linux/macOS users:**
```shell
# Start all services (foreground)
./run.sh
# Or
# Start all services (background)
./run.sh start --daemon
```
**Windows users:**
Simply double-click the `run.bat` script in the root directory
#### π οΈ 3.3 Manual Service Start
Requires [uv](https://docs.astral.sh/uv/getting-started/installation/) environment.
**Start Basic Service (mcp-base):**
```shell
cd mcp-base
# Install dependencies (only needed on first run or after updates)
uv sync
# Start service
uv run upload_api.py
```
**Start Server (mcp-server):**
```shell
cd pixelle
# Install dependencies (only needed on first run or after updates)
uv sync
# Start service
uv run upload_api.py
```
**Start Client (mcp-client):**
```shell
cd mcp-client
# Install dependencies (only needed on first run or after updates)
uv sync
# Start service (for hot-reload in dev mode: uv run chainlit run upload_api.py -w --port 9003)
uv run upload_api.py
```
### π 4. Access the Services
After startup, the service addresses are as follows:
- **Client**: π http://localhost:9003 (Chainlit Web UI, default username and password are both `dev`, can be changed in [`auth.py`](pixelle/web/auth/auth.py))
- **Server**: ποΈ http://localhost:9002/sse (MCP Server)
- **Base Service**: π§ http://localhost:9001/docs (File storage and basic API)
## π οΈ Add Your Own MCP Tool
β‘ One workflow = One MCP Tool

### π― 1. Add the Simplest MCP Tool
* π Build a workflow in ComfyUI for image Gaussian blur ([Get it here](docs/i_blur_ui.json)), then set the `LoadImage` node's title to `$image.image!` as shown below:

* π€ Export it as an API format file and rename it to `i_blur.json`. You can export it yourself or use our pre-exported version ([Get it here](docs/i_blur.json))
* π Copy the exported API workflow file (must be API format), input it on the web page, and let the LLM add this Tool

* β¨ After sending, the LLM will automatically convert this workflow into an MCP Tool

* π¨ Now, refresh the page and send any image to perform Gaussian blur processing via LLM

### π 2. Add a Complex MCP Tool
The steps are the same as above, only the workflow part differs (Download workflow: [UI format](docs/t2i_by_flux_turbo_ui.json) and [API format](docs/t2i_by_flux_turbo.json))

## π§ ComfyUI Workflow Custom Specification
### π¨ Workflow Format
The system supports ComfyUI workflows. Just design your workflow in the canvas and export it as API format. Use special syntax in node titles to define parameters and outputs.
### π Parameter Definition Specification
In the ComfyUI canvas, double-click the node title to edit, and use the following DSL syntax to define parameters:
```
$<param_name>.[~]<field_name>[!][:<description>]
```
#### π Syntax Explanation:
- `param_name`: The parameter name for the generated MCP tool function
- `~`: Optional, indicates URL parameter upload processing, returns relative path
- `field_name`: The corresponding input field in the node
- `!`: Indicates this parameter is required
- `description`: Description of the parameter
#### π‘ Example:
**Required parameter example:**
- Set LoadImage node title to: `$image.image!:Input image URL`
- Meaning: Creates a required parameter named `image`, mapped to the node's `image` field
**URL upload processing example:**
- Set any node title to: `$image.~image!:Input image URL`
- Meaning: Creates a required parameter named `image`, system will automatically download URL and upload to ComfyUI, returns relative path
> π Note: `LoadImage`, `VHS_LoadAudioUpload`, `VHS_LoadVideo` and other nodes have built-in functionality, no need to add `~` marker
**Optional parameter example:**
- Set EmptyLatentImage node title to: `$width.width:Image width, default 512`
- Meaning: Creates an optional parameter named `width`, mapped to the node's `width` field, default value is 512
### π― Type Inference Rules
The system automatically infers parameter types based on the current value of the node field:
- π’ `int`: Integer values (e.g. 512, 1024)
- π `float`: Floating-point values (e.g. 1.5, 3.14)
- β
`bool`: Boolean values (e.g. true, false)
- π `str`: String values (default type)
### π€ Output Definition Specification
#### π€ Method 1: Auto-detect Output Nodes
The system will automatically detect the following common output nodes:
- πΌοΈ `SaveImage` - Image save node
- π¬ `SaveVideo` - Video save node
- π `SaveAudio` - Audio save node
- πΉ `VHS_SaveVideo` - VHS video save node
- π΅ `VHS_SaveAudio` - VHS audio save node
#### π― Method 2: Manual Output Marking
> Usually used for multiple outputs
Use `$output.var_name` in any node title to mark output:
- Set node title to: `$output.result`
- The system will use this node's output as the tool's return value
### π Tool Description Configuration (Optional)
You can add a node titled `MCP` in the workflow to provide a tool description:
1. Add a `String (Multiline)` or similar text node (must have a single string property, and the node field should be one of: value, text, string)
2. Set the node title to: `MCP`
3. Enter a detailed tool description in the value field
### β οΈ Important Notes
1. **π Parameter Validation**: Optional parameters (without !) must have default values set in the node
2. **π Node Connections**: Fields already connected to other nodes will not be parsed as parameters
3. **π·οΈ Tool Naming**: Exported file name will be used as the tool name, use meaningful English names
4. **π Detailed Descriptions**: Provide detailed parameter descriptions for better user experience
5. **π― Export Format**: Must export as API format, do not export as UI format
## π¬ Community
Scan the QR codes below to join our communities for latest updates and technical support:
| Discord Community | WeChat Group |
| :----------------------------------------------------------: | :----------------------------------------------------------: |
| <img src="docs/discord.png" alt="Discord Community" width="250" /> | <img src="docs/wechat.png" alt="WeChat Group" width="250" /> |
## π€ How to Contribute
We welcome all forms of contribution! Whether you're a developer, designer, or user, you can participate in the project in the following ways:
### π Report Issues
* π Submit bug reports on the [Issues](https://github.com/AIDC-AI/Pixelle-MCP/issues) page
* π Please search for similar issues before submitting
* π Describe the reproduction steps and environment in detail
### π‘ Feature Suggestions
* π Submit feature requests in [Issues](https://github.com/AIDC-AI/Pixelle-MCP/issues)
* π Describe the feature you want and its use case
* π― Explain how it improves user experience
### π§ Code Contributions
#### π Contribution Process
1. π΄ Fork this repo to your GitHub account
2. πΏ Create a feature branch: `git checkout -b feature/your-feature-name`
3. π» Develop and add corresponding tests
4. π Commit changes: `git commit -m "feat: add your feature"`
5. π€ Push to your repo: `git push origin feature/your-feature-name`
6. π Create a Pull Request to the main repo
#### π¨ Code Style
* π Python code follows [PEP 8](https://pep8.org/) style guide
* π Add appropriate documentation and comments for new features
### π§© Contribute Workflows
* π¦ Share your ComfyUI workflows with the community
* π οΈ Submit tested workflow files
* π Add usage instructions and examples for workflows
## π Acknowledgements
β€οΈ Sincere thanks to the following organizations, projects, and teams for supporting the development and implementation of this project.
* π§© [ComfyUI](https://github.com/comfyanonymous/ComfyUI)
* π¬ [Chainlit](https://github.com/Chainlit/chainlit)
* π [MCP](https://modelcontextprotocol.io/introduction)
* π¬ [WanVideo](https://github.com/Wan-Video/Wan2.1)
* β‘ [Flux](https://github.com/black-forest-labs/flux)
* π€ [LiteLLM](https://github.com/BerriAI/litellm)
## License
This project is released under the MIT License ([LICENSE](LICENSE), SPDX-License-identifier: MIT).
Raw data
{
"_id": null,
"home_page": null,
"name": "pixelle-mcp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "AIGC, Chainlit, ComfyUI, LLM, MCP",
"author": "AIDC-AI",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/7e/35/ec0f186a563c9c911c8d67c6e9811359951977fb4af890e862fa257df109/pixelle_mcp-0.1.3.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\ud83c\udfa8 Pixelle MCP - Omnimodal Agent Framework</h1>\n\n<p align=\"center\"><b>English</b> | <a href=\"README_CN.md\">\u4e2d\u6587</a></p>\n\n<p align=\"center\">\u2728 An AIGC solution based on the MCP protocol, seamlessly converting ComfyUI workflows into MCP tools with zero code, empowering LLM and ComfyUI integration.</p>\n\n\n\nhttps://github.com/user-attachments/assets/65422cef-96f9-44fe-a82b-6a124674c417\n\n\n## \ud83d\udccb Recent Updates\n\n- \u2705 **2025-08-12**: Integrated the LiteLLM framework, adding multi-model support for Gemini, DeepSeek, Claude, Qwen, and more\n\n\n## \ud83d\ude80 Features\n\n- \u2705 \ud83d\udd04 **Full-modal Support**: Supports TISV (Text, Image, Sound/Speech, Video) full-modal conversion and generation\n- \u2705 \ud83e\udde9 **ComfyUI Ecosystem**: Server-side is built on [ComfyUI](https://github.com/comfyanonymous/ComfyUI), inheriting all capabilities from the open ComfyUI ecosystem\n- \u2705 \ud83d\udd27 **Zero-code Development**: Defines and implements the Workflow-as-MCP Tool solution, enabling zero-code development and dynamic addition of new MCP Tools\n- \u2705 \ud83d\uddc4\ufe0f **MCP Server**: Server provides functionality based on the [MCP](https://modelcontextprotocol.io/introduction) protocol, supporting integration with any MCP client (including but not limited to Cursor, Claude Desktop, etc.)\n- \u2705 \ud83c\udf10 **MCP Client**: Client is developed based on the [Chainlit](https://github.com/Chainlit/chainlit) framework, inheriting Chainlit's UI controls and supporting integration with more MCP Servers\n- \u2705 \ud83d\udd04 **Flexible Deployment**: Supports standalone deployment of Server-side only as MCP Server, or standalone deployment of Client-side only as MCP Client, or combined deployment\n- \u2705 \u2699\ufe0f **Unified Configuration**: Uses YAML configuration scheme, one config file manages all services\n- \u2705 \ud83e\udd16 **Multi-LLM Support**: Supports multiple mainstream LLMs, including OpenAI, Ollama, Gemini, DeepSeek, Claude, Qwen, and more\n\n\n## \ud83d\udcc1 Project Structure\n\n- **mcp-base**: \ud83d\udd27 Basic service, provides file storage and shared service capabilities\n- **mcp-client**: \ud83c\udf10 MCP client, a web interface built on Chainlit\n- **mcp-server**: \ud83d\uddc4\ufe0f MCP server, provides various AIGC tools and services\n\n\n\n\n## \ud83c\udfc3\u200d\u2642\ufe0f Quick Start\n\n### \ud83d\udce5 1. Clone the Source Code & Configure Services\n\n#### \ud83d\udce6 1.1 Clone the Source Code\n\n```shell\ngit clone https://github.com/AIDC-AI/Pixelle-MCP.git\ncd Pixelle-MCP\n```\n\n#### \u2699\ufe0f 1.2 Configure Services\n\nThe project uses a unified YAML configuration scheme:\n\n```shell\n# Copy the configuration example file\ncp config.yml.example config.yml\n# Edit configuration items as needed\n```\n\n**\ud83d\udccb Detailed Configuration Instructions:**\n\nThe configuration file contains three main sections: Basic Service, MCP Server, and MCP Client. Each section has detailed configuration item descriptions in [`config.yml.example`](config.yml.example).\n\n**\ud83d\udd0d Configuration Checklist:**\n- \u2705 Copied `config.yml.example` to `config.yml`\n- \u2705 Configured ComfyUI service address (ensure ComfyUI is running)\n- \u2705 Configured at least one LLM model (OpenAI or Ollama)\n- \u2705 Port numbers are not occupied by other services (9001, 9002, 9003)\n\n### \ud83d\udd27 2. Add MCP Tool (Optional)\n\nThis step is optional and only affects your Agent's capabilities. You can skip it if not needed for now.\n\nThe `mcp-server/workflows` directory contains a set of popular workflows by default. Run the following command to copy them to your mcp-server. When the service starts, they will be automatically converted into MCP Tools for LLM use.\n\n**Note: It is strongly recommended to test the workflow in your ComfyUI canvas before copying, to ensure smooth execution later.**\n\n```shell\ncp -r pixelle/workflows/* pixelle/data/custom_workflows/\n```\n\n### \ud83d\ude80 3. Start the Services\n\n#### \ud83c\udfaf 3.1 Start with Docker (Recommended)\n\n```shell\n# Start all services\ndocker compose up -d\n```\n\n#### \ud83d\udee0\ufe0f 3.2 One-click Script Start\n\nRequires [uv](https://docs.astral.sh/uv/getting-started/installation/) environment.\n\n**Linux/macOS users:**\n```shell\n# Start all services (foreground)\n./run.sh\n\n# Or\n\n# Start all services (background)\n./run.sh start --daemon\n```\n\n**Windows users:**\n\nSimply double-click the `run.bat` script in the root directory\n\n#### \ud83d\udee0\ufe0f 3.3 Manual Service Start\n\nRequires [uv](https://docs.astral.sh/uv/getting-started/installation/) environment.\n\n**Start Basic Service (mcp-base):**\n```shell\ncd mcp-base\n# Install dependencies (only needed on first run or after updates)\nuv sync\n# Start service\nuv run upload_api.py\n```\n\n**Start Server (mcp-server):**\n```shell\ncd pixelle\n# Install dependencies (only needed on first run or after updates)\nuv sync\n# Start service\nuv run upload_api.py\n```\n\n**Start Client (mcp-client):**\n```shell\ncd mcp-client\n# Install dependencies (only needed on first run or after updates)\nuv sync\n# Start service (for hot-reload in dev mode: uv run chainlit run upload_api.py -w --port 9003)\nuv run upload_api.py\n```\n\n\n### \ud83c\udf10 4. Access the Services\n\nAfter startup, the service addresses are as follows:\n\n- **Client**: \ud83c\udf10 http://localhost:9003 (Chainlit Web UI, default username and password are both `dev`, can be changed in [`auth.py`](pixelle/web/auth/auth.py))\n- **Server**: \ud83d\uddc4\ufe0f http://localhost:9002/sse (MCP Server)\n- **Base Service**: \ud83d\udd27 http://localhost:9001/docs (File storage and basic API)\n\n## \ud83d\udee0\ufe0f Add Your Own MCP Tool\n\n\u26a1 One workflow = One MCP Tool\n\n\n\n### \ud83c\udfaf 1. Add the Simplest MCP Tool\n\n* \ud83d\udcdd Build a workflow in ComfyUI for image Gaussian blur ([Get it here](docs/i_blur_ui.json)), then set the `LoadImage` node's title to `$image.image!` as shown below:\n\n\n* \ud83d\udce4 Export it as an API format file and rename it to `i_blur.json`. You can export it yourself or use our pre-exported version ([Get it here](docs/i_blur.json))\n\n* \ud83d\udccb Copy the exported API workflow file (must be API format), input it on the web page, and let the LLM add this Tool\n\n \n\n* \u2728 After sending, the LLM will automatically convert this workflow into an MCP Tool\n\n \n\n* \ud83c\udfa8 Now, refresh the page and send any image to perform Gaussian blur processing via LLM\n\n \n\n### \ud83d\udd0c 2. Add a Complex MCP Tool\n\nThe steps are the same as above, only the workflow part differs (Download workflow: [UI format](docs/t2i_by_flux_turbo_ui.json) and [API format](docs/t2i_by_flux_turbo.json))\n\n\n\n\n## \ud83d\udd27 ComfyUI Workflow Custom Specification\n\n### \ud83c\udfa8 Workflow Format\nThe system supports ComfyUI workflows. Just design your workflow in the canvas and export it as API format. Use special syntax in node titles to define parameters and outputs.\n\n### \ud83d\udcdd Parameter Definition Specification\n\nIn the ComfyUI canvas, double-click the node title to edit, and use the following DSL syntax to define parameters:\n\n```\n$<param_name>.[~]<field_name>[!][:<description>]\n```\n\n#### \ud83d\udd0d Syntax Explanation:\n- `param_name`: The parameter name for the generated MCP tool function\n- `~`: Optional, indicates URL parameter upload processing, returns relative path\n- `field_name`: The corresponding input field in the node\n- `!`: Indicates this parameter is required\n- `description`: Description of the parameter\n\n#### \ud83d\udca1 Example:\n\n**Required parameter example:**\n\n- Set LoadImage node title to: `$image.image!:Input image URL`\n- Meaning: Creates a required parameter named `image`, mapped to the node's `image` field\n\n**URL upload processing example:**\n\n- Set any node title to: `$image.~image!:Input image URL`\n- Meaning: Creates a required parameter named `image`, system will automatically download URL and upload to ComfyUI, returns relative path\n\n> \ud83d\udcdd Note: `LoadImage`, `VHS_LoadAudioUpload`, `VHS_LoadVideo` and other nodes have built-in functionality, no need to add `~` marker\n\n**Optional parameter example:**\n\n- Set EmptyLatentImage node title to: `$width.width:Image width, default 512`\n- Meaning: Creates an optional parameter named `width`, mapped to the node's `width` field, default value is 512\n\n### \ud83c\udfaf Type Inference Rules\n\nThe system automatically infers parameter types based on the current value of the node field:\n- \ud83d\udd22 `int`: Integer values (e.g. 512, 1024)\n- \ud83d\udcca `float`: Floating-point values (e.g. 1.5, 3.14)\n- \u2705 `bool`: Boolean values (e.g. true, false)\n- \ud83d\udcdd `str`: String values (default type)\n\n### \ud83d\udce4 Output Definition Specification\n\n#### \ud83e\udd16 Method 1: Auto-detect Output Nodes\nThe system will automatically detect the following common output nodes:\n- \ud83d\uddbc\ufe0f `SaveImage` - Image save node\n- \ud83c\udfac `SaveVideo` - Video save node\n- \ud83d\udd0a `SaveAudio` - Audio save node\n- \ud83d\udcf9 `VHS_SaveVideo` - VHS video save node\n- \ud83c\udfb5 `VHS_SaveAudio` - VHS audio save node\n\n#### \ud83c\udfaf Method 2: Manual Output Marking\n> Usually used for multiple outputs\nUse `$output.var_name` in any node title to mark output:\n- Set node title to: `$output.result`\n- The system will use this node's output as the tool's return value\n\n\n### \ud83d\udcc4 Tool Description Configuration (Optional)\n\nYou can add a node titled `MCP` in the workflow to provide a tool description:\n\n1. Add a `String (Multiline)` or similar text node (must have a single string property, and the node field should be one of: value, text, string)\n2. Set the node title to: `MCP`\n3. Enter a detailed tool description in the value field\n\n\n### \u26a0\ufe0f Important Notes\n\n1. **\ud83d\udd12 Parameter Validation**: Optional parameters (without !) must have default values set in the node\n2. **\ud83d\udd17 Node Connections**: Fields already connected to other nodes will not be parsed as parameters\n3. **\ud83c\udff7\ufe0f Tool Naming**: Exported file name will be used as the tool name, use meaningful English names\n4. **\ud83d\udccb Detailed Descriptions**: Provide detailed parameter descriptions for better user experience\n5. **\ud83c\udfaf Export Format**: Must export as API format, do not export as UI format\n\n\n## \ud83d\udcac Community\n\nScan the QR codes below to join our communities for latest updates and technical support:\n\n| Discord Community | WeChat Group |\n| :----------------------------------------------------------: | :----------------------------------------------------------: |\n| <img src=\"docs/discord.png\" alt=\"Discord Community\" width=\"250\" /> | <img src=\"docs/wechat.png\" alt=\"WeChat Group\" width=\"250\" /> |\n\n## \ud83e\udd1d How to Contribute\n\nWe welcome all forms of contribution! Whether you're a developer, designer, or user, you can participate in the project in the following ways:\n\n### \ud83d\udc1b Report Issues\n* \ud83d\udccb Submit bug reports on the [Issues](https://github.com/AIDC-AI/Pixelle-MCP/issues) page\n* \ud83d\udd0d Please search for similar issues before submitting\n* \ud83d\udcdd Describe the reproduction steps and environment in detail\n\n### \ud83d\udca1 Feature Suggestions\n* \ud83d\ude80 Submit feature requests in [Issues](https://github.com/AIDC-AI/Pixelle-MCP/issues)\n* \ud83d\udcad Describe the feature you want and its use case\n* \ud83c\udfaf Explain how it improves user experience\n\n### \ud83d\udd27 Code Contributions\n\n#### \ud83d\udccb Contribution Process\n1. \ud83c\udf74 Fork this repo to your GitHub account\n2. \ud83c\udf3f Create a feature branch: `git checkout -b feature/your-feature-name`\n3. \ud83d\udcbb Develop and add corresponding tests\n4. \ud83d\udcdd Commit changes: `git commit -m \"feat: add your feature\"`\n5. \ud83d\udce4 Push to your repo: `git push origin feature/your-feature-name`\n6. \ud83d\udd04 Create a Pull Request to the main repo\n\n#### \ud83c\udfa8 Code Style\n* \ud83d\udc0d Python code follows [PEP 8](https://pep8.org/) style guide\n* \ud83d\udcd6 Add appropriate documentation and comments for new features\n\n### \ud83e\udde9 Contribute Workflows\n* \ud83d\udce6 Share your ComfyUI workflows with the community\n* \ud83d\udee0\ufe0f Submit tested workflow files\n* \ud83d\udcda Add usage instructions and examples for workflows\n\n## \ud83d\ude4f Acknowledgements\n\n\u2764\ufe0f Sincere thanks to the following organizations, projects, and teams for supporting the development and implementation of this project.\n\n* \ud83e\udde9 [ComfyUI](https://github.com/comfyanonymous/ComfyUI)\n* \ud83d\udcac [Chainlit](https://github.com/Chainlit/chainlit)\n\n* \ud83d\udd0c [MCP](https://modelcontextprotocol.io/introduction)\n* \ud83c\udfac [WanVideo](https://github.com/Wan-Video/Wan2.1)\n* \u26a1 [Flux](https://github.com/black-forest-labs/flux)\n* \ud83e\udd16 [LiteLLM](https://github.com/BerriAI/litellm)\n\n## License\nThis project is released under the MIT License ([LICENSE](LICENSE), SPDX-License-identifier: MIT).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Pixelle MCP: Convert ComfyUI workflows into MCP Tools with a single command, providing an MCP server and a Chainlit-based web UI.",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://pixelle.ai",
"Issues": "https://github.com/AIDC-AI/Pixelle-MCP/issues",
"Repository": "https://github.com/AIDC-AI/Pixelle-MCP"
},
"split_keywords": [
"aigc",
" chainlit",
" comfyui",
" llm",
" mcp"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2ea3042b0ce46eaa99c0cd03c4d4827a11cab573be6db7925ca0d23824378c3e",
"md5": "986cb2ee0fe33cc0be2494e54782c830",
"sha256": "36ed5cbba4ccb6c3aee118b89a79a08a824fa8de701948375f0dcf04da3b33a2"
},
"downloads": -1,
"filename": "pixelle_mcp-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "986cb2ee0fe33cc0be2494e54782c830",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 6037843,
"upload_time": "2025-09-01T08:25:04",
"upload_time_iso_8601": "2025-09-01T08:25:04.086432Z",
"url": "https://files.pythonhosted.org/packages/2e/a3/042b0ce46eaa99c0cd03c4d4827a11cab573be6db7925ca0d23824378c3e/pixelle_mcp-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7e35ec0f186a563c9c911c8d67c6e9811359951977fb4af890e862fa257df109",
"md5": "06ff3b22f1d04e10808d417c53cd94a8",
"sha256": "d7b4516a03d3d3275c6f23862048259b19ce37c184c9a07ed39f426e3d0d2b79"
},
"downloads": -1,
"filename": "pixelle_mcp-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "06ff3b22f1d04e10808d417c53cd94a8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 5996494,
"upload_time": "2025-09-01T08:25:07",
"upload_time_iso_8601": "2025-09-01T08:25:07.952914Z",
"url": "https://files.pythonhosted.org/packages/7e/35/ec0f186a563c9c911c8d67c6e9811359951977fb4af890e862fa257df109/pixelle_mcp-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-01 08:25:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "AIDC-AI",
"github_project": "Pixelle-MCP",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pixelle-mcp"
}