# plico_interferometer
client of an interferometer controlled under the plico environment
### How to use it
On the client side, in order to use the interferometer, installation of the plico_interferometer package is required.
The steps required for the startup are
- Have a Python working environment (no specific version is required, but preferably higher than 3)
- Install the Python library using the command pip install plico_interferometer
- Open a terminal and execute the following commands
```
import plico_interferometer
interf = plico_interferometer.interferometer(hostServer, portServer)
```
- Use standard command as interf.wavefront(n_images)
### Direct connection with WCF 4D
To connect to 4Ds with WCF (such as the 6110), for which it is not strictly necessary to have a plico server because the 4D SW itself implements a server and responds to json requests, it is possible to follow this steps directly from the client
- Have a Python working environment (no specific version is required, but preferably higher than 3)
- Install the Python library using the command pip install plico_interferometer
- Open a terminal and execute the following commands
```
import plico_interferometer
interf = plico_interferometer.interferometer_4SightFocus_client(ip, port)
```
If you want to use the burst frame acquisition option you have to use the standard server/client structure... TO BE IMPLEMENTED
![Python package](https://github.com/ArcetriAdaptiveOptics/plico_interferometer/workflows/Python%20package/badge.svg)
[![codecov](https://codecov.io/gh/ArcetriAdaptiveOptics/plico_interferometer/branch/main/graph/badge.svg?token=ApWOrs49uw)](https://codecov.io/gh/ArcetriAdaptiveOptics/plico_interferometer)
[![Documentation Status](https://readthedocs.org/projects/plico_interferometer/badge/?version=latest)](https://plico_interferometer.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/plico-interferometer.svg)](https://badge.fury.io/py/plico-interferometer)
plico_interferometer is an application to control motors under the [plico][plico] environment.
[plico]: https://github.com/ArcetriAdaptiveOptics/plico
Raw data
{
"_id": null,
"home_page": "https://github.com/ArcetriAdaptiveOptics/plico_interferometer",
"name": "plico-interferometer",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "plico, interferometer, laboratory, instrumentation control",
"author": "Lorenzo Busoni, Alfio Puglisi",
"author_email": "lorenzo.busoni@inaf.it",
"download_url": "https://files.pythonhosted.org/packages/4f/bc/aa3519086fc9d6288df27bd31a2223182f109b3a5db17d7929f19929ac67/plico_interferometer-0.1.1.tar.gz",
"platform": null,
"description": "# plico_interferometer\n\nclient of an interferometer controlled under the plico environment \n\n### How to use it\nOn the client side, in order to use the interferometer, installation of the plico_interferometer package is required.\nThe steps required for the startup are\n\n- Have a Python working environment (no specific version is required, but preferably higher than 3)\n\n- Install the Python library using the command pip install plico_interferometer\n\n- Open a terminal and execute the following commands\n```\nimport plico_interferometer\ninterf = plico_interferometer.interferometer(hostServer, portServer)\n```\n- Use standard command as interf.wavefront(n_images)\n\n### Direct connection with WCF 4D\nTo connect to 4Ds with WCF (such as the 6110), for which it is not strictly necessary to have a plico server because the 4D SW itself implements a server and responds to json requests, it is possible to follow this steps directly from the client\n\n- Have a Python working environment (no specific version is required, but preferably higher than 3)\n\n- Install the Python library using the command pip install plico_interferometer\n\n- Open a terminal and execute the following commands\n```\nimport plico_interferometer\ninterf = plico_interferometer.interferometer_4SightFocus_client(ip, port)\n```\n\nIf you want to use the burst frame acquisition option you have to use the standard server/client structure... TO BE IMPLEMENTED\n\n\n\n ![Python package](https://github.com/ArcetriAdaptiveOptics/plico_interferometer/workflows/Python%20package/badge.svg)\n [![codecov](https://codecov.io/gh/ArcetriAdaptiveOptics/plico_interferometer/branch/main/graph/badge.svg?token=ApWOrs49uw)](https://codecov.io/gh/ArcetriAdaptiveOptics/plico_interferometer)\n [![Documentation Status](https://readthedocs.org/projects/plico_interferometer/badge/?version=latest)](https://plico_interferometer.readthedocs.io/en/latest/?badge=latest)\n [![PyPI version](https://badge.fury.io/py/plico-interferometer.svg)](https://badge.fury.io/py/plico-interferometer)\n\n\nplico_interferometer is an application to control motors under the [plico][plico] environment.\n\n[plico]: https://github.com/ArcetriAdaptiveOptics/plico\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "interferometer controller with PLICO",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/ArcetriAdaptiveOptics/plico_interferometer"
},
"split_keywords": [
"plico",
" interferometer",
" laboratory",
" instrumentation control"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7e244e796eb63d47805cea9770858c0aa23b990fa12ca171151e914b192b0467",
"md5": "86574af212889cc4224ff61a753d17ed",
"sha256": "6b41b0a2581cf19771ca2e910d361ada65fc2ab0ee0f6900f0313e5f049c0a68"
},
"downloads": -1,
"filename": "plico_interferometer-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "86574af212889cc4224ff61a753d17ed",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9273,
"upload_time": "2024-04-24T10:53:19",
"upload_time_iso_8601": "2024-04-24T10:53:19.065474Z",
"url": "https://files.pythonhosted.org/packages/7e/24/4e796eb63d47805cea9770858c0aa23b990fa12ca171151e914b192b0467/plico_interferometer-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4fbcaa3519086fc9d6288df27bd31a2223182f109b3a5db17d7929f19929ac67",
"md5": "693fb4a701fbf716e6dd3f3df39191d5",
"sha256": "e861b9ce26719ae0f84347e0b32296729bcde9780ba1bf2b30776d9c36289d44"
},
"downloads": -1,
"filename": "plico_interferometer-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "693fb4a701fbf716e6dd3f3df39191d5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 12260,
"upload_time": "2024-04-24T10:53:23",
"upload_time_iso_8601": "2024-04-24T10:53:23.283985Z",
"url": "https://files.pythonhosted.org/packages/4f/bc/aa3519086fc9d6288df27bd31a2223182f109b3a5db17d7929f19929ac67/plico_interferometer-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-24 10:53:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ArcetriAdaptiveOptics",
"github_project": "plico_interferometer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "plico-interferometer"
}