# plotrs
A **lightweight plotting utility** for visualizing rewards vs steps in Reinforcement Learning (RL), Multi-Armed Bandits (MAB), and other iterative training algorithms.
`plotrs` provides a single, easy-to-use function `plot_reward_vs_steps()` that plots rewards over time and can optionally smooth the curve using a moving average.
---
## ✨ Features
- 📈 **Simple, one-line plotting**
- 🎯 Perfect for **RL** or **MAB** experiments
- 🔍 Optional **moving average smoothing**
- 🖼 Clean **Matplotlib** visualization
- ⚡ Zero boilerplate — just call and plot
---
## 📦 Installation
```bash
pip install plotrs
Raw data
{
"_id": null,
"home_page": null,
"name": "plot-reward-vs-steps",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "reinforcement-learning, plot, rewards, matplotlib, bandit",
"author": null,
"author_email": "Shreeya Dutta <shreeya.dutta08@nmims.in>",
"download_url": "https://files.pythonhosted.org/packages/b2/a6/3e009d0fedaf45e3470f6c5b66424607e40d23f330fce61e4bddfc15e61a/plot_reward_vs_steps-0.1.1.tar.gz",
"platform": null,
"description": "# plotrs\r\n\r\nA **lightweight plotting utility** for visualizing rewards vs steps in Reinforcement Learning (RL), Multi-Armed Bandits (MAB), and other iterative training algorithms.\r\n\r\n`plotrs` provides a single, easy-to-use function `plot_reward_vs_steps()` that plots rewards over time and can optionally smooth the curve using a moving average.\r\n\r\n---\r\n\r\n## \u2728 Features\r\n- \ud83d\udcc8 **Simple, one-line plotting**\r\n- \ud83c\udfaf Perfect for **RL** or **MAB** experiments\r\n- \ud83d\udd0d Optional **moving average smoothing**\r\n- \ud83d\uddbc Clean **Matplotlib** visualization\r\n- \u26a1 Zero boilerplate \u2014 just call and plot\r\n\r\n---\r\n\r\n## \ud83d\udce6 Installation\r\n```bash\r\npip install plotrs\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Simple RL reward plotting utility",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [
"reinforcement-learning",
" plot",
" rewards",
" matplotlib",
" bandit"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a6c400509933ffed4aa6cf2659c9e08356229726168f60865a3c96de1459f405",
"md5": "8f16dfebdc1db51b32b2fd0fdafaa048",
"sha256": "16b044c77ec03cc881eee96a3d9370c795039a94a091dd3f6e2a758fcffcee56"
},
"downloads": -1,
"filename": "plot_reward_vs_steps-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8f16dfebdc1db51b32b2fd0fdafaa048",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 2874,
"upload_time": "2025-08-11T17:19:02",
"upload_time_iso_8601": "2025-08-11T17:19:02.103928Z",
"url": "https://files.pythonhosted.org/packages/a6/c4/00509933ffed4aa6cf2659c9e08356229726168f60865a3c96de1459f405/plot_reward_vs_steps-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b2a63e009d0fedaf45e3470f6c5b66424607e40d23f330fce61e4bddfc15e61a",
"md5": "26739dfbd32e2a6829a2b7ecf81815e0",
"sha256": "6919c88ed1ab81037b8c4408aeb6737cf004be9cee8235d84da3604e30c2cd9f"
},
"downloads": -1,
"filename": "plot_reward_vs_steps-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "26739dfbd32e2a6829a2b7ecf81815e0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 2342,
"upload_time": "2025-08-11T17:19:03",
"upload_time_iso_8601": "2025-08-11T17:19:03.407423Z",
"url": "https://files.pythonhosted.org/packages/b2/a6/3e009d0fedaf45e3470f6c5b66424607e40d23f330fce61e4bddfc15e61a/plot_reward_vs_steps-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-11 17:19:03",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "plot-reward-vs-steps"
}