plottoolbox


Nameplottoolbox JSON
Version 105.0.3 PyPI version JSON
download
home_pageNone
SummaryCommand line script and Python library to make plots from data files.
upload_time2024-07-05 00:46:04
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseBSD-3-Clause
keywords time-series cli-app aggregate fill filter
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://github.com/timcera/plottoolbox/actions/workflows/pypi-package.yml/badge.svg
    :alt: Tests
    :target: https://github.com/timcera/plottoolbox/actions/workflows/pypi-package.yml
    :height: 20

.. image:: https://img.shields.io/coveralls/github/timcera/plottoolbox
    :alt: Test Coverage
    :target: https://coveralls.io/r/timcera/plottoolbox?branch=master
    :height: 20

.. image:: https://img.shields.io/pypi/v/plottoolbox.svg
    :alt: Latest release
    :target: https://pypi.python.org/pypi/plottoolbox/
    :height: 20

.. image:: https://img.shields.io/pypi/l/plottoolbox.svg
    :alt: BSD-3 clause license
    :target: https://pypi.python.org/pypi/plottoolbox/
    :height: 20

.. image:: https://img.shields.io/pypi/dd/plottoolbox.svg
    :alt: plottoolbox downloads
    :target: https://pypi.python.org/pypi/plottoolbox/
    :height: 20

.. image:: https://img.shields.io/pypi/pyversions/plottoolbox
    :alt: PyPI - Python Version
    :target: https://pypi.org/project/plottoolbox/
    :height: 20

plottoolbox - Quick Guide
=========================
The plottoolbox is a Python script to manipulate time-series on the command line
or by function calls within Python.  Uses pandas (http://pandas.pydata.org/)
or numpy (http://numpy.scipy.org) for any heavy lifting.

Requirements
------------
* pandas - on Windows this is part scientific Python distributions like
  Python(x,y), Anaconda, or Enthought.

Installation
------------
pip
~~~
.. code-block:: bash

    pip install plottoolbox

conda
~~~~~
.. code-block:: bash

    conda install -c conda-forge plottoolbox


Usage - Command Line
--------------------
Just run 'plottoolbox --help' to get a list of subcommands::

    usage: plottoolbox [-h]
                       {autocorrelation, bar, bar_stacked, barh, barh_stacked,
                       bootstrap, boxplot, double_mass, heatmap, histogram,
                       kde, kde_time, lag_plot, lognorm_xaxis, lognorm_yaxis,
                       norm_xaxis, norm_yaxis, probability_density,
                       scatter_matrix, target, taylor, time, weibull_xaxis,
                       weibull_yaxis, xy, about} ...

    positional arguments:
      {autocorrelation, bar, bar_stacked, barh, barh_stacked, bootstrap,
      boxplot, double_mass, heatmap, histogram, kde, kde_time, lag_plot,
      lognorm_xaxis, lognorm_yaxis, norm_xaxis, norm_yaxis,
      probability_density, scatter_matrix, target, taylor, time, weibull_xaxis,
      weibull_yaxis, xy, about}

    autocorrelation
        Autocorrelation plot.
    bar
        Bar plot, sometimes called a "column" plot.
    bar_stacked
        Stacked vertical bar, sometimes called a stacked column plot.
    barh
        Bar plot, sometimes called a "column" plot.
    barh_stacked
        Horizontal stacked bar plot.
    bootstrap
        Bootstrap plot randomly selects a subset of the imput time-series.
    boxplot
        Box and whiskers plot.
    double_mass
        Double mass curve - cumulative sum of x against cumulative sum of y.
    heatmap
        2D heatmap of daily data.
    histogram
        Histogram.
    kde
        Kernel density estimation of probability density function.
    kde_time
        A time-series plot with a kernel density estimation (KDE) plot.
    lag_plot
        Lag plot.
    lognorm_xaxis
        Log-normal x-axis.
    lognorm_yaxis
        Log-normal y-axis.
    norm_xaxis
        Normal x-axis.
    norm_yaxis
        Normal y-axis.
    probability_density
        Probability plot.
    scatter_matrix
        Plots all columns against each other in matrix of plots.
    target
        Creates a "target" diagram to plot goodness of fit.
    taylor
        Taylor diagram to plot goodness of fit.
    time
        Time-series plot.
    weibull_xaxis
        Weibull x-axis.
    weibull_yaxis
        Weibull y-axis.
    xy
        Creates an 'x,y' plot, also known as a scatter plot.
    about
        Display version number and system information.

    optional arguments:
      -h, --help            show this help message and exit

The default for all of the subcommands is to accept data from stdin (typically
a pipe).  If a subcommand accepts an input file for an argument, you can use
"--input_ts=input_file_name.csv", or to explicitly specify from stdin (the
default) "--input_ts='-'".

For the subcommands that output data it is printed to the screen and you can
then redirect to a file.

Usage - API
-----------
You can use all of the command line subcommands as functions.  The function
signature is identical to the command line subcommands.  The return is always
a PANDAS DataFrame.  Input can be a CSV or TAB separated file, or a PANDAS
DataFrame and is supplied to the function via the 'input_ts' keyword.

Simply import plottoolbox::

    from plottoolbox import plottoolbox

    # Then you could call the functions
    plt = plottoolbox.time(input_ts='tests/test_fill_01.csv')

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "plottoolbox",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "time-series, cli-app, aggregate, fill, filter",
    "author": null,
    "author_email": "Tim Cera <tim@cerazone.net>",
    "download_url": "https://files.pythonhosted.org/packages/df/ec/9c3433f13c6780c800796bc87890a7447690e3656851898b26b6f68492c0/plottoolbox-105.0.3.tar.gz",
    "platform": null,
    "description": ".. image:: https://github.com/timcera/plottoolbox/actions/workflows/pypi-package.yml/badge.svg\n    :alt: Tests\n    :target: https://github.com/timcera/plottoolbox/actions/workflows/pypi-package.yml\n    :height: 20\n\n.. image:: https://img.shields.io/coveralls/github/timcera/plottoolbox\n    :alt: Test Coverage\n    :target: https://coveralls.io/r/timcera/plottoolbox?branch=master\n    :height: 20\n\n.. image:: https://img.shields.io/pypi/v/plottoolbox.svg\n    :alt: Latest release\n    :target: https://pypi.python.org/pypi/plottoolbox/\n    :height: 20\n\n.. image:: https://img.shields.io/pypi/l/plottoolbox.svg\n    :alt: BSD-3 clause license\n    :target: https://pypi.python.org/pypi/plottoolbox/\n    :height: 20\n\n.. image:: https://img.shields.io/pypi/dd/plottoolbox.svg\n    :alt: plottoolbox downloads\n    :target: https://pypi.python.org/pypi/plottoolbox/\n    :height: 20\n\n.. image:: https://img.shields.io/pypi/pyversions/plottoolbox\n    :alt: PyPI - Python Version\n    :target: https://pypi.org/project/plottoolbox/\n    :height: 20\n\nplottoolbox - Quick Guide\n=========================\nThe plottoolbox is a Python script to manipulate time-series on the command line\nor by function calls within Python.  Uses pandas (http://pandas.pydata.org/)\nor numpy (http://numpy.scipy.org) for any heavy lifting.\n\nRequirements\n------------\n* pandas - on Windows this is part scientific Python distributions like\n  Python(x,y), Anaconda, or Enthought.\n\nInstallation\n------------\npip\n~~~\n.. code-block:: bash\n\n    pip install plottoolbox\n\nconda\n~~~~~\n.. code-block:: bash\n\n    conda install -c conda-forge plottoolbox\n\n\nUsage - Command Line\n--------------------\nJust run 'plottoolbox --help' to get a list of subcommands::\n\n    usage: plottoolbox [-h]\n                       {autocorrelation, bar, bar_stacked, barh, barh_stacked,\n                       bootstrap, boxplot, double_mass, heatmap, histogram,\n                       kde, kde_time, lag_plot, lognorm_xaxis, lognorm_yaxis,\n                       norm_xaxis, norm_yaxis, probability_density,\n                       scatter_matrix, target, taylor, time, weibull_xaxis,\n                       weibull_yaxis, xy, about} ...\n\n    positional arguments:\n      {autocorrelation, bar, bar_stacked, barh, barh_stacked, bootstrap,\n      boxplot, double_mass, heatmap, histogram, kde, kde_time, lag_plot,\n      lognorm_xaxis, lognorm_yaxis, norm_xaxis, norm_yaxis,\n      probability_density, scatter_matrix, target, taylor, time, weibull_xaxis,\n      weibull_yaxis, xy, about}\n\n    autocorrelation\n        Autocorrelation plot.\n    bar\n        Bar plot, sometimes called a \"column\" plot.\n    bar_stacked\n        Stacked vertical bar, sometimes called a stacked column plot.\n    barh\n        Bar plot, sometimes called a \"column\" plot.\n    barh_stacked\n        Horizontal stacked bar plot.\n    bootstrap\n        Bootstrap plot randomly selects a subset of the imput time-series.\n    boxplot\n        Box and whiskers plot.\n    double_mass\n        Double mass curve - cumulative sum of x against cumulative sum of y.\n    heatmap\n        2D heatmap of daily data.\n    histogram\n        Histogram.\n    kde\n        Kernel density estimation of probability density function.\n    kde_time\n        A time-series plot with a kernel density estimation (KDE) plot.\n    lag_plot\n        Lag plot.\n    lognorm_xaxis\n        Log-normal x-axis.\n    lognorm_yaxis\n        Log-normal y-axis.\n    norm_xaxis\n        Normal x-axis.\n    norm_yaxis\n        Normal y-axis.\n    probability_density\n        Probability plot.\n    scatter_matrix\n        Plots all columns against each other in matrix of plots.\n    target\n        Creates a \"target\" diagram to plot goodness of fit.\n    taylor\n        Taylor diagram to plot goodness of fit.\n    time\n        Time-series plot.\n    weibull_xaxis\n        Weibull x-axis.\n    weibull_yaxis\n        Weibull y-axis.\n    xy\n        Creates an 'x,y' plot, also known as a scatter plot.\n    about\n        Display version number and system information.\n\n    optional arguments:\n      -h, --help            show this help message and exit\n\nThe default for all of the subcommands is to accept data from stdin (typically\na pipe).  If a subcommand accepts an input file for an argument, you can use\n\"--input_ts=input_file_name.csv\", or to explicitly specify from stdin (the\ndefault) \"--input_ts='-'\".\n\nFor the subcommands that output data it is printed to the screen and you can\nthen redirect to a file.\n\nUsage - API\n-----------\nYou can use all of the command line subcommands as functions.  The function\nsignature is identical to the command line subcommands.  The return is always\na PANDAS DataFrame.  Input can be a CSV or TAB separated file, or a PANDAS\nDataFrame and is supplied to the function via the 'input_ts' keyword.\n\nSimply import plottoolbox::\n\n    from plottoolbox import plottoolbox\n\n    # Then you could call the functions\n    plt = plottoolbox.time(input_ts='tests/test_fill_01.csv')\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Command line script and Python library to make plots from data files.",
    "version": "105.0.3",
    "project_urls": {
        "bitbucket": "https://bitbucket.org/timcera/plottoolbox/src/main/",
        "documentation": "https://timcera.bitbucket.io/plottoolbox/docs/index.html#plottoolbox-documentation",
        "github": "https://github.com/timcera/plottoolbox"
    },
    "split_keywords": [
        "time-series",
        " cli-app",
        " aggregate",
        " fill",
        " filter"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2dc3b97883f04e7daeda1c406a2b690b08aa9fbfafafc1688c9b6f01a43bc6cd",
                "md5": "519c31eda4615b4b4f6372f7e3ef0ae6",
                "sha256": "0403185758059e8f96ec473f6a929632302438f041357ecab0f300daa99ec500"
            },
            "downloads": -1,
            "filename": "plottoolbox-105.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "519c31eda4615b4b4f6372f7e3ef0ae6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 293866,
            "upload_time": "2024-07-05T00:46:02",
            "upload_time_iso_8601": "2024-07-05T00:46:02.182520Z",
            "url": "https://files.pythonhosted.org/packages/2d/c3/b97883f04e7daeda1c406a2b690b08aa9fbfafafc1688c9b6f01a43bc6cd/plottoolbox-105.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dfec9c3433f13c6780c800796bc87890a7447690e3656851898b26b6f68492c0",
                "md5": "e651909c9ff0350ff871254ef28bcc16",
                "sha256": "3d1872c261e9e9b41c3f13c2238ec284bb6c046e9d7069be1a14dc76b8ced916"
            },
            "downloads": -1,
            "filename": "plottoolbox-105.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "e651909c9ff0350ff871254ef28bcc16",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4485092,
            "upload_time": "2024-07-05T00:46:04",
            "upload_time_iso_8601": "2024-07-05T00:46:04.020736Z",
            "url": "https://files.pythonhosted.org/packages/df/ec/9c3433f13c6780c800796bc87890a7447690e3656851898b26b6f68492c0/plottoolbox-105.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-05 00:46:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "timcera",
    "github_project": "plottoolbox",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "plottoolbox"
}
        
Elapsed time: 4.11337s