pocket-dimension


Namepocket-dimension JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/mhendrey/pocket_dimension
SummaryMemory-efficient, dense, random projection of sparse vectors
upload_time2023-08-14 20:22:48
maintainer
docs_urlNone
authorMatthew Hendrey
requires_python>=3.8
licenseGNU GPLv3
keywords numba random projection term-frequency tfidf dimension reduction
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: ../../images/logo.png
    :align: center
    :alt: A small spiral galaxy inside a small glass sphere

==================================

Pocket Dimension provides a memory-efficient, dense, random projection of sparse vectors. This
random projection is the used to be able to take records {"id": str, "features": List[bytes],
"counts": List[int]}, convert them into sparse random vectors using scikit-learn's FeatureHasher,
and then project them down to lower dimensional dense vectors.

When the very large sparse universe becomes too inhospitable, escape into a cozy pocket dimension.

Documentation
=============
Documentation for the API and theoretical foundations of the algorithms can be
found at https://mhendrey.github.io/pocket_dimension

Installation
============
Pocket Dimension may be install using pip::

    pip install pocket_dimension

I'm working on a conda-forge version, but this uses pybloomfiltermmap3 which is currently only on PyPi.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mhendrey/pocket_dimension",
    "name": "pocket-dimension",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "numba,random projection,term-frequency,tfidf,dimension reduction",
    "author": "Matthew Hendrey",
    "author_email": "matthew.hendrey@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d4/64/18f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035/pocket_dimension-0.1.4.tar.gz",
    "platform": null,
    "description": ".. image:: ../../images/logo.png\n    :align: center\n    :alt: A small spiral galaxy inside a small glass sphere\n\n==================================\n\nPocket Dimension provides a memory-efficient, dense, random projection of sparse vectors. This\nrandom projection is the used to be able to take records {\"id\": str, \"features\": List[bytes],\n\"counts\": List[int]}, convert them into sparse random vectors using scikit-learn's FeatureHasher,\nand then project them down to lower dimensional dense vectors.\n\nWhen the very large sparse universe becomes too inhospitable, escape into a cozy pocket dimension.\n\nDocumentation\n=============\nDocumentation for the API and theoretical foundations of the algorithms can be\nfound at https://mhendrey.github.io/pocket_dimension\n\nInstallation\n============\nPocket Dimension may be install using pip::\n\n    pip install pocket_dimension\n\nI'm working on a conda-forge version, but this uses pybloomfiltermmap3 which is currently only on PyPi.\n",
    "bugtrack_url": null,
    "license": "GNU GPLv3",
    "summary": "Memory-efficient, dense, random projection of sparse vectors",
    "version": "0.1.4",
    "project_urls": {
        "Documentation": "https://mhendrey.github.io/pocket_dimension",
        "Homepage": "https://github.com/mhendrey/pocket_dimension",
        "Source": "https://github.com/mhendrey/pocket_dimension"
    },
    "split_keywords": [
        "numba",
        "random projection",
        "term-frequency",
        "tfidf",
        "dimension reduction"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c9d3ec5249bf8be8e98e494e5352326afffe5f6956f3714fb43c468ee907314",
                "md5": "3032ddafc68c2064b35d05980546db96",
                "sha256": "3bd4ca5dfdeca97c7627a39752b46a8e05bc98fcbbf99e154a587369c171f8b0"
            },
            "downloads": -1,
            "filename": "pocket_dimension-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3032ddafc68c2064b35d05980546db96",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 25471,
            "upload_time": "2023-08-14T20:22:46",
            "upload_time_iso_8601": "2023-08-14T20:22:46.675880Z",
            "url": "https://files.pythonhosted.org/packages/7c/9d/3ec5249bf8be8e98e494e5352326afffe5f6956f3714fb43c468ee907314/pocket_dimension-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d46418f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035",
                "md5": "4c906ba3abd9714cb017ca5bc30b2fb6",
                "sha256": "d0a8f6985ce798e3c210652cae3c2c35a4372ee82c46a8965a18d21bddcb7003"
            },
            "downloads": -1,
            "filename": "pocket_dimension-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "4c906ba3abd9714cb017ca5bc30b2fb6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 27960,
            "upload_time": "2023-08-14T20:22:48",
            "upload_time_iso_8601": "2023-08-14T20:22:48.793205Z",
            "url": "https://files.pythonhosted.org/packages/d4/64/18f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035/pocket_dimension-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-14 20:22:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mhendrey",
    "github_project": "pocket_dimension",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pocket-dimension"
}
        
Elapsed time: 0.22397s