.. image:: ../../images/logo.png
:align: center
:alt: A small spiral galaxy inside a small glass sphere
==================================
Pocket Dimension provides a memory-efficient, dense, random projection of sparse vectors. This
random projection is the used to be able to take records {"id": str, "features": List[bytes],
"counts": List[int]}, convert them into sparse random vectors using scikit-learn's FeatureHasher,
and then project them down to lower dimensional dense vectors.
When the very large sparse universe becomes too inhospitable, escape into a cozy pocket dimension.
Documentation
=============
Documentation for the API and theoretical foundations of the algorithms can be
found at https://mhendrey.github.io/pocket_dimension
Installation
============
Pocket Dimension may be install using pip::
pip install pocket_dimension
I'm working on a conda-forge version, but this uses pybloomfiltermmap3 which is currently only on PyPi.
Raw data
{
"_id": null,
"home_page": "https://github.com/mhendrey/pocket_dimension",
"name": "pocket-dimension",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "numba,random projection,term-frequency,tfidf,dimension reduction",
"author": "Matthew Hendrey",
"author_email": "matthew.hendrey@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/d4/64/18f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035/pocket_dimension-0.1.4.tar.gz",
"platform": null,
"description": ".. image:: ../../images/logo.png\n :align: center\n :alt: A small spiral galaxy inside a small glass sphere\n\n==================================\n\nPocket Dimension provides a memory-efficient, dense, random projection of sparse vectors. This\nrandom projection is the used to be able to take records {\"id\": str, \"features\": List[bytes],\n\"counts\": List[int]}, convert them into sparse random vectors using scikit-learn's FeatureHasher,\nand then project them down to lower dimensional dense vectors.\n\nWhen the very large sparse universe becomes too inhospitable, escape into a cozy pocket dimension.\n\nDocumentation\n=============\nDocumentation for the API and theoretical foundations of the algorithms can be\nfound at https://mhendrey.github.io/pocket_dimension\n\nInstallation\n============\nPocket Dimension may be install using pip::\n\n pip install pocket_dimension\n\nI'm working on a conda-forge version, but this uses pybloomfiltermmap3 which is currently only on PyPi.\n",
"bugtrack_url": null,
"license": "GNU GPLv3",
"summary": "Memory-efficient, dense, random projection of sparse vectors",
"version": "0.1.4",
"project_urls": {
"Documentation": "https://mhendrey.github.io/pocket_dimension",
"Homepage": "https://github.com/mhendrey/pocket_dimension",
"Source": "https://github.com/mhendrey/pocket_dimension"
},
"split_keywords": [
"numba",
"random projection",
"term-frequency",
"tfidf",
"dimension reduction"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7c9d3ec5249bf8be8e98e494e5352326afffe5f6956f3714fb43c468ee907314",
"md5": "3032ddafc68c2064b35d05980546db96",
"sha256": "3bd4ca5dfdeca97c7627a39752b46a8e05bc98fcbbf99e154a587369c171f8b0"
},
"downloads": -1,
"filename": "pocket_dimension-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3032ddafc68c2064b35d05980546db96",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 25471,
"upload_time": "2023-08-14T20:22:46",
"upload_time_iso_8601": "2023-08-14T20:22:46.675880Z",
"url": "https://files.pythonhosted.org/packages/7c/9d/3ec5249bf8be8e98e494e5352326afffe5f6956f3714fb43c468ee907314/pocket_dimension-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d46418f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035",
"md5": "4c906ba3abd9714cb017ca5bc30b2fb6",
"sha256": "d0a8f6985ce798e3c210652cae3c2c35a4372ee82c46a8965a18d21bddcb7003"
},
"downloads": -1,
"filename": "pocket_dimension-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "4c906ba3abd9714cb017ca5bc30b2fb6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 27960,
"upload_time": "2023-08-14T20:22:48",
"upload_time_iso_8601": "2023-08-14T20:22:48.793205Z",
"url": "https://files.pythonhosted.org/packages/d4/64/18f076ef4e0b957066deaad29762c161892991a5c67aba5637dcd98cf035/pocket_dimension-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-14 20:22:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mhendrey",
"github_project": "pocket_dimension",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pocket-dimension"
}