poliduckie-segmentation


Namepoliduckie-segmentation JSON
Version 0.1.17.1 PyPI version JSON
download
home_pagehttps://github.com/poliduckie/poliduckie_segmentation
SummarySegmentation from the Poliduckie team.
upload_time2023-04-08 10:34:18
maintainer
docs_urlNone
authorPoliduckies
requires_python>=3.6
licenseMIT
keywords segmentation duckietown tensorflow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Poliduckies common packages
[![PyPI version](https://badge.fury.io/py/poliduckie_segmentation.svg)](https://badge.fury.io/py/poliduckie_segmentation)


A package ready to be installed that provides the work made by the Poliduckie team

```
pip install poliduckie-segmentation
```

### Example for segmentation
```python
from poliduckie_segmentation.segmentation import Segmentation

image = [...]
segmentation = Segmentation()

# To predict:
prediction = segmentation.predict(image)

# To get the model:
segmentation.get_model()

# To get the model summary:
segmentation.get_model_summary()

```

### Example for MPC
```python
from poliduckie_segmentation.control import MPC

M = MPC()

# x = state, r = reference (with N=10 be like r=[[0.1, 0.1]]*10)
next_action = M.mpc(x, r)

```

### Example for Model
```python
from poliduckie_segmentation.model import Model

F = Model()

x, y, theta = 0,0,0
action = [1,1] # linear and angular speed
next_state = F.step(x, y, theta, previous_speed, previous_angular_speed, action)

# To use as action left and right wheel speed:
F.step_wheel_speed(x, y, theta, previous_speed, previous_angular_speed, action)

```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/poliduckie/poliduckie_segmentation",
    "name": "poliduckie-segmentation",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "segmentation,duckietown,tensorflow",
    "author": "Poliduckies",
    "author_email": "duckietown@aeapolimi.it",
    "download_url": "https://files.pythonhosted.org/packages/ff/8e/7c56153c6fe817e74fca6acd0f893c0fea55b161572e85a84b1346ce7414/poliduckie_segmentation-0.1.17.1.tar.gz",
    "platform": null,
    "description": "# Poliduckies common packages\n[![PyPI version](https://badge.fury.io/py/poliduckie_segmentation.svg)](https://badge.fury.io/py/poliduckie_segmentation)\n\n\nA package ready to be installed that provides the work made by the Poliduckie team\n\n```\npip install poliduckie-segmentation\n```\n\n### Example for segmentation\n```python\nfrom poliduckie_segmentation.segmentation import Segmentation\n\nimage = [...]\nsegmentation = Segmentation()\n\n# To predict:\nprediction = segmentation.predict(image)\n\n# To get the model:\nsegmentation.get_model()\n\n# To get the model summary:\nsegmentation.get_model_summary()\n\n```\n\n### Example for MPC\n```python\nfrom poliduckie_segmentation.control import MPC\n\nM = MPC()\n\n# x = state, r = reference (with N=10 be like r=[[0.1, 0.1]]*10)\nnext_action = M.mpc(x, r)\n\n```\n\n### Example for Model\n```python\nfrom poliduckie_segmentation.model import Model\n\nF = Model()\n\nx, y, theta = 0,0,0\naction = [1,1] # linear and angular speed\nnext_state = F.step(x, y, theta, previous_speed, previous_angular_speed, action)\n\n# To use as action left and right wheel speed:\nF.step_wheel_speed(x, y, theta, previous_speed, previous_angular_speed, action)\n\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Segmentation from the Poliduckie team.",
    "version": "0.1.17.1",
    "split_keywords": [
        "segmentation",
        "duckietown",
        "tensorflow"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "57db7b7b07d9ea35d472a1a42a6813b7b1a2d339bba30246d527e5ccfb2923d7",
                "md5": "374cf3333bcf9ef9e65d754858a840f3",
                "sha256": "598f67899ea29f6d2ce76cef4305e514bd562251be534620b4a46b9b2701a641"
            },
            "downloads": -1,
            "filename": "poliduckie_segmentation-0.1.17.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "374cf3333bcf9ef9e65d754858a840f3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 22109460,
            "upload_time": "2023-04-08T10:34:15",
            "upload_time_iso_8601": "2023-04-08T10:34:15.753184Z",
            "url": "https://files.pythonhosted.org/packages/57/db/7b7b07d9ea35d472a1a42a6813b7b1a2d339bba30246d527e5ccfb2923d7/poliduckie_segmentation-0.1.17.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff8e7c56153c6fe817e74fca6acd0f893c0fea55b161572e85a84b1346ce7414",
                "md5": "05707ceb8ee0cbde51c3711a031022f9",
                "sha256": "f2678e1baa96e3092a0696f68f17e7f8e4b7ea59e4496011bcd8e165f49dbb34"
            },
            "downloads": -1,
            "filename": "poliduckie_segmentation-0.1.17.1.tar.gz",
            "has_sig": false,
            "md5_digest": "05707ceb8ee0cbde51c3711a031022f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 22101110,
            "upload_time": "2023-04-08T10:34:18",
            "upload_time_iso_8601": "2023-04-08T10:34:18.891464Z",
            "url": "https://files.pythonhosted.org/packages/ff/8e/7c56153c6fe817e74fca6acd0f893c0fea55b161572e85a84b1346ce7414/poliduckie_segmentation-0.1.17.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-08 10:34:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "poliduckie",
    "github_project": "poliduckie_segmentation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "poliduckie-segmentation"
}
        
Elapsed time: 1.05282s