# PolyGraphs
<p align="center">
<img src="https://akoliousis.com/polygraphs/eu_email_core.webp" alt="Visualisation of EU Email Core network" height="250">
</p>
<p align="center"><a href="https://akoliousis.com/polygraphs/">Documentation</a> | <a href="https://polygraphs.sites.northeastern.edu/">Website</a> | <a href="https://pypi.org/project/polygraphs/">PyPi</a></p>
PolyGraphs is a scaleable framework for performing simulations on networks built using PyTorch and DGL that can run on CPUs and GPUs.
## Getting Started
PolyGraphs requires and appropriately configured version of PyTorch and DGL before installation, see the [getting started guide](https://akoliousis.com/polygraphs/guide/introduction/getting-started) for more details. You can install the PolyGraphs library via PyPi:
```bash
pip install polygraphs
```
You can run simulations using a configuration file with the `polygraphs` command:
``` bash
polygraphs -f test.yaml
```
### Installing from Source
Advanced users can [install from source](https://akoliousis.com/polygraphs/guide/introduction/install-from-source), see the documentation for more details on running PolyGraphs on the [platform guide](https://akoliousis.com/polygraphs/guide/introduction/platform-guide).
## Analysing Simulation Results
Results from simulations can be processed using the [analysis module](https://akoliousis.com/polygraphs/guide/simulations/processing-results).
## Papers About PolyGraphs
Ball, B., Koliousis, A., Mohanan, A. & Peacey, M. [Computational philosophy: reflections on the PolyGraphs project](https://doi.org/10.1057/s41599-024-02619-z). Humanit Soc Sci Commun 11, 186 (2024).
Ball, B., Koliousis, A., Mohanan, A. & Peacey, M. [Misinformation and higher-order evidence](https://doi.org/10.1057/s41599-024-03806-8). Humanit Soc Sci Commun 11, 1294 (2024).
## Contributing
Please file an [issue](https://github.com/alexandroskoliousis/polygraphs/issues) if you encounter a bug or have any suggestions. Bug-fixes, contributions, new features and extensions are welcomed through discussion in issues.
Raw data
{
"_id": null,
"home_page": "https://github.com/alexandroskoliousis/polygraphs",
"name": "polygraphs",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": null,
"keywords": "philosophy, epistemology, simulation",
"author": "Alexandros Koliousis",
"author_email": "Alexandros Koliousis <ak@akoliousis.com>, Amil Mohanan <amil@mohanan.net>",
"download_url": null,
"platform": null,
"description": "# PolyGraphs\n<p align=\"center\">\n <img src=\"https://akoliousis.com/polygraphs/eu_email_core.webp\" alt=\"Visualisation of EU Email Core network\" height=\"250\">\n</p>\n\n<p align=\"center\"><a href=\"https://akoliousis.com/polygraphs/\">Documentation</a> | <a href=\"https://polygraphs.sites.northeastern.edu/\">Website</a> | <a href=\"https://pypi.org/project/polygraphs/\">PyPi</a></p>\n\nPolyGraphs is a scaleable framework for performing simulations on networks built using PyTorch and DGL that can run on CPUs and GPUs.\n\n## Getting Started\nPolyGraphs requires and appropriately configured version of PyTorch and DGL before installation, see the [getting started guide](https://akoliousis.com/polygraphs/guide/introduction/getting-started) for more details. You can install the PolyGraphs library via PyPi:\n\n```bash\npip install polygraphs\n```\n\nYou can run simulations using a configuration file with the `polygraphs` command:\n\n``` bash\npolygraphs -f test.yaml\n```\n\n### Installing from Source\nAdvanced users can [install from source](https://akoliousis.com/polygraphs/guide/introduction/install-from-source), see the documentation for more details on running PolyGraphs on the [platform guide](https://akoliousis.com/polygraphs/guide/introduction/platform-guide).\n\n## Analysing Simulation Results\nResults from simulations can be processed using the [analysis module](https://akoliousis.com/polygraphs/guide/simulations/processing-results). \n\n## Papers About PolyGraphs\nBall, B., Koliousis, A., Mohanan, A. & Peacey, M. [Computational philosophy: reflections on the PolyGraphs project](https://doi.org/10.1057/s41599-024-02619-z). Humanit Soc Sci Commun 11, 186 (2024).\n\nBall, B., Koliousis, A., Mohanan, A. & Peacey, M. [Misinformation and higher-order evidence](https://doi.org/10.1057/s41599-024-03806-8). Humanit Soc Sci Commun 11, 1294 (2024).\n\n## Contributing\nPlease file an [issue](https://github.com/alexandroskoliousis/polygraphs/issues) if you encounter a bug or have any suggestions. Bug-fixes, contributions, new features and extensions are welcomed through discussion in issues.\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Philosophical simulations on networks",
"version": "0.0.22a0",
"project_urls": {
"Documentation": "https://akoliousis.com/polygraphs/",
"Homepage": "https://github.com/alexandroskoliousis/polygraphs",
"Repository": "https://github.com/alexandroskoliousis/polygraphs"
},
"split_keywords": [
"philosophy",
" epistemology",
" simulation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fdea84c4981cfe66cce1aeabca4f5c18fdbc9bbbd4e2a37913f6399db20559c7",
"md5": "c23379465c6dd9344f68b0f0899190a5",
"sha256": "fbc39871c4451bde3f91d460f55f0c97ec5875ee9f552acfd3bd3b44f4c6190f"
},
"downloads": -1,
"filename": "polygraphs-0.0.22a0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c23379465c6dd9344f68b0f0899190a5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 45119,
"upload_time": "2024-11-04T17:38:09",
"upload_time_iso_8601": "2024-11-04T17:38:09.149028Z",
"url": "https://files.pythonhosted.org/packages/fd/ea/84c4981cfe66cce1aeabca4f5c18fdbc9bbbd4e2a37913f6399db20559c7/polygraphs-0.0.22a0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-04 17:38:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "alexandroskoliousis",
"github_project": "polygraphs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "polygraphs"
}