polyssifier


Namepolyssifier JSON
Version 1.0.10 PyPI version JSON
download
home_pagehttps://github.com/alvarouc/polyssifier
SummaryData exploration tool for assessing optimal classification methods
upload_time2024-02-22 21:44:27
maintainer
docs_urlNone
authorAlvaro Ulloa
requires_python
licenseGPLv3
keywords classification machine learning data science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            [![Coverage Status](https://coveralls.io/repos/github/alvarouc/polyssifier/badge.svg)](https://coveralls.io/github/alvarouc/polyssifier) 
![example workflow](https://github.com/alvarouc/polyssifier/actions/workflows/python-package.yml/badge.svg)

Polyssifier
===========

Polyssifier runs a multitude of machine learning models on data. It reports scores, confusion matrices, predictions, and plots the scores ranked by classifier performance.

## Installation
```bash
pip install polyssifier
```

## How to use
### For classification
```python
from polyssifier import poly
# Load data
data = np.load("/path/to/data.npy")
label = np.load("/path/to/labels.npy")
# Run analysis
report = poly(data,label, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)
```

### For Regression
```python
from polyssifier import polyr
# Load data
data = np.load("/path/to/data.npy")
target = np.load("/path/to/target.npy")
# Run analysis
report = polyr(data, target, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)
```

### In the terminal
```bash
poly data.npy label.npy --concurrency 10
```

### Requirements
 - Sklearn
 - Numpy
 - Pandas

### Features
 - Cross validated scores.
   - Report f1 score (scoring='f1') or ROC (scoring='auc') for classification
   - Report MSE or R^2 for regression
 - Feature ranking for compatible models (Logistic Regression, Linear SVM, Random Forest)
 - Parallel processing. 
   - Control the number of threads with 'concurrency'.
   - We recommend setting concurrency to half the number of Cores in your system.
 - Saves trained models for future use in case of server malfunction. 
   - Set project_name for identifying a experiment.
 - Activate feature selection step setting 
   - feature_selection=True
 - Automatically scales your data with scale=True

Example: on [sample/example.ipynb](sample/example.ipynb)

It includes the following classifiers:

- Multilayer Perceptron
- Nearest Neighbors
- Linear SVM
- RBF SVM
- Decision Tree
- Random Forest
- Logistic Regression
- Naive Bayes
- Voting Classifier

and the following regressors:

- Linear Regression
- Bayesian Ridge
- PassiveAggressiveRegressor
- GaussianProcessRegressor
- Ridge
- Lasso
- Lars
- LassoLars
- OrthogonalMatchingPursuit
- ElasticNet

You can exclude some of this models by providing a list of names as follows:
```python
from polyssifier import poly

report = poly(data,label, n_folds=8,
              exclude=['Multilayer Perceptron'])
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/alvarouc/polyssifier",
    "name": "polyssifier",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "classification machine learning data science",
    "author": "Alvaro Ulloa",
    "author_email": "alvarouc@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fb/a8/27ca5d628a132995b93a60acd0d12cd8a17e1b877a53b67113da0050a03f/polyssifier-1.0.10.tar.gz",
    "platform": null,
    "description": "[![Coverage Status](https://coveralls.io/repos/github/alvarouc/polyssifier/badge.svg)](https://coveralls.io/github/alvarouc/polyssifier) \n![example workflow](https://github.com/alvarouc/polyssifier/actions/workflows/python-package.yml/badge.svg)\n\nPolyssifier\n===========\n\nPolyssifier runs a multitude of machine learning models on data. It reports scores, confusion matrices, predictions, and plots the scores ranked by classifier performance.\n\n## Installation\n```bash\npip install polyssifier\n```\n\n## How to use\n### For classification\n```python\nfrom polyssifier import poly\n# Load data\ndata = np.load(\"/path/to/data.npy\")\nlabel = np.load(\"/path/to/labels.npy\")\n# Run analysis\nreport = poly(data,label, n_folds=8)\n# Plot results\nreport.plot_scores()\nreport.plot_features(ntop=10)\n```\n\n### For Regression\n```python\nfrom polyssifier import polyr\n# Load data\ndata = np.load(\"/path/to/data.npy\")\ntarget = np.load(\"/path/to/target.npy\")\n# Run analysis\nreport = polyr(data, target, n_folds=8)\n# Plot results\nreport.plot_scores()\nreport.plot_features(ntop=10)\n```\n\n### In the terminal\n```bash\npoly data.npy label.npy --concurrency 10\n```\n\n### Requirements\n - Sklearn\n - Numpy\n - Pandas\n\n### Features\n - Cross validated scores.\n   - Report f1 score (scoring='f1') or ROC (scoring='auc') for classification\n   - Report MSE or R^2 for regression\n - Feature ranking for compatible models (Logistic Regression, Linear SVM, Random Forest)\n - Parallel processing. \n   - Control the number of threads with 'concurrency'.\n   - We recommend setting concurrency to half the number of Cores in your system.\n - Saves trained models for future use in case of server malfunction. \n   - Set project_name for identifying a experiment.\n - Activate feature selection step setting \n   - feature_selection=True\n - Automatically scales your data with scale=True\n\nExample: on [sample/example.ipynb](sample/example.ipynb)\n\nIt includes the following classifiers:\n\n- Multilayer Perceptron\n- Nearest Neighbors\n- Linear SVM\n- RBF SVM\n- Decision Tree\n- Random Forest\n- Logistic Regression\n- Naive Bayes\n- Voting Classifier\n\nand the following regressors:\n\n- Linear Regression\n- Bayesian Ridge\n- PassiveAggressiveRegressor\n- GaussianProcessRegressor\n- Ridge\n- Lasso\n- Lars\n- LassoLars\n- OrthogonalMatchingPursuit\n- ElasticNet\n\nYou can exclude some of this models by providing a list of names as follows:\n```python\nfrom polyssifier import poly\n\nreport = poly(data,label, n_folds=8,\n              exclude=['Multilayer Perceptron'])\n```\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Data exploration tool for assessing optimal classification methods",
    "version": "1.0.10",
    "project_urls": {
        "Homepage": "https://github.com/alvarouc/polyssifier"
    },
    "split_keywords": [
        "classification",
        "machine",
        "learning",
        "data",
        "science"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1eb9ba8d3ce6a426b15462a6479c4d0f062ef12e1b57f12d837ef73767942bac",
                "md5": "3f3e99d79e47f441b30be5696ae11cc4",
                "sha256": "791037b5b88a7752cbdb883e07835b2756a7c9eec7a66720fc2f2af7bc967675"
            },
            "downloads": -1,
            "filename": "polyssifier-1.0.10-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f3e99d79e47f441b30be5696ae11cc4",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 20167,
            "upload_time": "2024-02-22T21:44:25",
            "upload_time_iso_8601": "2024-02-22T21:44:25.100948Z",
            "url": "https://files.pythonhosted.org/packages/1e/b9/ba8d3ce6a426b15462a6479c4d0f062ef12e1b57f12d837ef73767942bac/polyssifier-1.0.10-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fba827ca5d628a132995b93a60acd0d12cd8a17e1b877a53b67113da0050a03f",
                "md5": "7b19167a120755a06d5eb62987c05dbf",
                "sha256": "13147823d275179b422ff421d9eb5e00f247e3693e785ee7ec3e47df764631e0"
            },
            "downloads": -1,
            "filename": "polyssifier-1.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "7b19167a120755a06d5eb62987c05dbf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 22266,
            "upload_time": "2024-02-22T21:44:27",
            "upload_time_iso_8601": "2024-02-22T21:44:27.281000Z",
            "url": "https://files.pythonhosted.org/packages/fb/a8/27ca5d628a132995b93a60acd0d12cd8a17e1b877a53b67113da0050a03f/polyssifier-1.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-22 21:44:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alvarouc",
    "github_project": "polyssifier",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "polyssifier"
}
        
Elapsed time: 2.16793s