popodds


Namepopodds JSON
Version 0.7.1 PyPI version JSON
download
home_pagehttps://github.com/mdmould/popodds
SummarySimple package for Bayesian model comparison.
upload_time2024-07-11 03:10:40
maintainerNone
docs_urlNone
authorMatthew Mould
requires_python>=3.7
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # popodds
Simple package for Bayesian model comparison.

Given samples from a posterior distribution inferred under some default prior, compute the Bayes factor or odds in favour of a new prior model.

## Installation

`pip install popodds`

## Usage

The package consists of the `ModelComparison` class to compute Bayes factors, and a wrapper function `log_odds` for simplicity.

The computation only requires a few ingredients:
- `model` a new prior model or samples from it,
- `prior` the original parameter estimation prior or samples from it
- `samples` samples from a parameter estimation run.

Optional:
- `model_bounds` parameter bounds for the new prior model,
- `prior_bounds` parameter bounds for the original prior model,
- `log` compute probability densities in log space,
- `prior_odds` odds between the prior models, which defaults to unity,
- `second_model` model to compute odds against instead of prior,
- `second_bounds` parameter bounds for the second model,
- `detectable` compare between detectable rather than intrinsic populations.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mdmould/popodds",
    "name": "popodds",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Matthew Mould",
    "author_email": "mattdmould@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a8/00/1d758e7c27a8d72377cb3076f232777247d0a504ce4fb13ef398929c07e9/popodds-0.7.1.tar.gz",
    "platform": null,
    "description": "# popodds\nSimple package for Bayesian model comparison.\n\nGiven samples from a posterior distribution inferred under some default prior, compute the Bayes factor or odds in favour of a new prior model.\n\n## Installation\n\n`pip install popodds`\n\n## Usage\n\nThe package consists of the `ModelComparison` class to compute Bayes factors, and a wrapper function `log_odds` for simplicity.\n\nThe computation only requires a few ingredients:\n- `model` a new prior model or samples from it,\n- `prior` the original parameter estimation prior or samples from it\n- `samples` samples from a parameter estimation run.\n\nOptional:\n- `model_bounds` parameter bounds for the new prior model,\n- `prior_bounds` parameter bounds for the original prior model,\n- `log` compute probability densities in log space,\n- `prior_odds` odds between the prior models, which defaults to unity,\n- `second_model` model to compute odds against instead of prior,\n- `second_bounds` parameter bounds for the second model,\n- `detectable` compare between detectable rather than intrinsic populations.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Simple package for Bayesian model comparison.",
    "version": "0.7.1",
    "project_urls": {
        "Homepage": "https://github.com/mdmould/popodds"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52c8b916262fa4710651d976b4d5835232c6a7be46c79337a8ca8b70802283ec",
                "md5": "7c37f837c93d101cf36aef159a8d919f",
                "sha256": "f2067e249461f21e72a12397540bcc3cfbeefdd126d0847b1b2ee96a01dd7571"
            },
            "downloads": -1,
            "filename": "popodds-0.7.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7c37f837c93d101cf36aef159a8d919f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 6802,
            "upload_time": "2024-07-11T03:10:39",
            "upload_time_iso_8601": "2024-07-11T03:10:39.366636Z",
            "url": "https://files.pythonhosted.org/packages/52/c8/b916262fa4710651d976b4d5835232c6a7be46c79337a8ca8b70802283ec/popodds-0.7.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a8001d758e7c27a8d72377cb3076f232777247d0a504ce4fb13ef398929c07e9",
                "md5": "47fbd7d9d6b90ba7730672e709dce913",
                "sha256": "4f1b80f548ef2d30950da3f1046899c45962c720bf5e6498e06fea6f5cc3ad71"
            },
            "downloads": -1,
            "filename": "popodds-0.7.1.tar.gz",
            "has_sig": false,
            "md5_digest": "47fbd7d9d6b90ba7730672e709dce913",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6297,
            "upload_time": "2024-07-11T03:10:40",
            "upload_time_iso_8601": "2024-07-11T03:10:40.957555Z",
            "url": "https://files.pythonhosted.org/packages/a8/00/1d758e7c27a8d72377cb3076f232777247d0a504ce4fb13ef398929c07e9/popodds-0.7.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-11 03:10:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mdmould",
    "github_project": "popodds",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "popodds"
}
        
Elapsed time: 0.42060s