Name | powerbox JSON |
Version |
0.8.2
JSON |
| download |
home_page | None |
Summary | Create arbitrary boxes with isotropic power spectra |
upload_time | 2024-08-05 16:22:04 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
power-spectrum
signal processing
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
|
========
powerbox
========
.. image:: https://img.shields.io/pypi/v/powerbox.svg
:target: https://pypi.python.org/pypi/powerbox
.. image:: https://travis-ci.org/steven-murray/powerbox.svg?branch=master
:target: https://travis-ci.org/steven-murray/powerbox
.. image:: https://coveralls.io/repos/github/steven-murray/powerbox/badge.svg?branch=master
:target: https://coveralls.io/github/steven-murray/powerbox?branch=master
.. image:: https://api.codacy.com/project/badge/Grade/5853411c78444a5a9c6ec4058c6dbda9
:target: https://www.codacy.com/app/steven-murray/powerbox?utm_source=github.com&utm_medium=referral&utm_content=steven-murray/powerbox&utm_campaign=Badge_Grade
.. image:: https://zenodo.org/badge/72076717.svg
:target: https://zenodo.org/badge/latestdoi/72076717
.. image:: http://joss.theoj.org/papers/10.21105/joss.00850/status.svg
:target: https://doi.org/10.21105/joss.00850
**Make arbitrarily structured, arbitrary-dimension boxes and log-normal mocks.**
``powerbox`` is a pure-python code for creating density grids (or boxes) that have an
arbitrary two-point distribution (i.e. power spectrum). Primary motivations for creating
the code were the simple creation of log-normal mock galaxy distributions, but the
methodology can be used for other applications.
Features
--------
* Works in any number of dimensions.
* Really simple.
* Arbitrary isotropic power-spectra.
* Create Gaussian or Log-Normal fields
* Create discrete samples following the field, assuming it describes an over-density.
* Measure power spectra of output fields to ensure consistency.
* Seamlessly uses pyFFTW if available for ~double the speed.
Installation
------------
Simply ``pip install powerbox``. If you want ~2x speedup for large boxes, you can also
install ``pyfftw`` by doing ``pip install powerbox[all]``. If you are a conda user, you
may want to install ``numpy`` with conda first. If you want to develop ``powerbox``,
clone the repo and install with ``python -m pip install -e ".[dev]"``.
Acknowledgment
--------------
If you find ``powerbox`` useful in your research, please cite the Journal of Open Source Software paper at
https://doi.org/10.21105/joss.00850.
QuickLinks
----------
* Docs: https://powerbox.readthedocs.io
* Quickstart: http://powerbox.readthedocs.io/en/latest/demos/getting_started.html
Raw data
{
"_id": null,
"home_page": null,
"name": "powerbox",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "power-spectrum, signal processing",
"author": null,
"author_email": "Steven Murray <steven.g.murray@asu.edu>",
"download_url": "https://files.pythonhosted.org/packages/60/a5/f009c4b67087a8a844a107c494c2ca11362b1f8e6b88519f3207fe0a9f61/powerbox-0.8.2.tar.gz",
"platform": null,
"description": "========\npowerbox\n========\n.. image:: https://img.shields.io/pypi/v/powerbox.svg\n :target: https://pypi.python.org/pypi/powerbox\n.. image:: https://travis-ci.org/steven-murray/powerbox.svg?branch=master\n :target: https://travis-ci.org/steven-murray/powerbox\n.. image:: https://coveralls.io/repos/github/steven-murray/powerbox/badge.svg?branch=master\n :target: https://coveralls.io/github/steven-murray/powerbox?branch=master\n.. image:: https://api.codacy.com/project/badge/Grade/5853411c78444a5a9c6ec4058c6dbda9\n :target: https://www.codacy.com/app/steven-murray/powerbox?utm_source=github.com&utm_medium=referral&utm_content=steven-murray/powerbox&utm_campaign=Badge_Grade\n.. image:: https://zenodo.org/badge/72076717.svg\n :target: https://zenodo.org/badge/latestdoi/72076717\n.. image:: http://joss.theoj.org/papers/10.21105/joss.00850/status.svg\n :target: https://doi.org/10.21105/joss.00850\n\n**Make arbitrarily structured, arbitrary-dimension boxes and log-normal mocks.**\n\n``powerbox`` is a pure-python code for creating density grids (or boxes) that have an\narbitrary two-point distribution (i.e. power spectrum). Primary motivations for creating\nthe code were the simple creation of log-normal mock galaxy distributions, but the\nmethodology can be used for other applications.\n\nFeatures\n--------\n* Works in any number of dimensions.\n* Really simple.\n* Arbitrary isotropic power-spectra.\n* Create Gaussian or Log-Normal fields\n* Create discrete samples following the field, assuming it describes an over-density.\n* Measure power spectra of output fields to ensure consistency.\n* Seamlessly uses pyFFTW if available for ~double the speed.\n\nInstallation\n------------\nSimply ``pip install powerbox``. If you want ~2x speedup for large boxes, you can also\ninstall ``pyfftw`` by doing ``pip install powerbox[all]``. If you are a conda user, you\nmay want to install ``numpy`` with conda first. If you want to develop ``powerbox``,\nclone the repo and install with ``python -m pip install -e \".[dev]\"``.\n\nAcknowledgment\n--------------\nIf you find ``powerbox`` useful in your research, please cite the Journal of Open Source Software paper at\nhttps://doi.org/10.21105/joss.00850.\n\nQuickLinks\n----------\n* Docs: https://powerbox.readthedocs.io\n* Quickstart: http://powerbox.readthedocs.io/en/latest/demos/getting_started.html\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Create arbitrary boxes with isotropic power spectra",
"version": "0.8.2",
"project_urls": {
"documentation": "https://powerbox.readthedocs.io",
"repository": "https://github.com/steven-murray/powerbox"
},
"split_keywords": [
"power-spectrum",
" signal processing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "73316ee5bf7da224ecdf9555183070d9d1f235b39ac769865feb387f4aa5e8c2",
"md5": "589642130a92b92977260f9977abe8f3",
"sha256": "e6b6dc599855ebc178b21685c09a55530e2817b887425201af20a8a2ade8c8cd"
},
"downloads": -1,
"filename": "powerbox-0.8.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "589642130a92b92977260f9977abe8f3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 24719,
"upload_time": "2024-08-05T16:22:03",
"upload_time_iso_8601": "2024-08-05T16:22:03.058176Z",
"url": "https://files.pythonhosted.org/packages/73/31/6ee5bf7da224ecdf9555183070d9d1f235b39ac769865feb387f4aa5e8c2/powerbox-0.8.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "60a5f009c4b67087a8a844a107c494c2ca11362b1f8e6b88519f3207fe0a9f61",
"md5": "d9968cb03aa4514042dff214ee48fea4",
"sha256": "4279caad88e84f9260e9c058fd0655597951cc156880da8181941816535063fa"
},
"downloads": -1,
"filename": "powerbox-0.8.2.tar.gz",
"has_sig": false,
"md5_digest": "d9968cb03aa4514042dff214ee48fea4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 3242299,
"upload_time": "2024-08-05T16:22:04",
"upload_time_iso_8601": "2024-08-05T16:22:04.966729Z",
"url": "https://files.pythonhosted.org/packages/60/a5/f009c4b67087a8a844a107c494c2ca11362b1f8e6b88519f3207fe0a9f61/powerbox-0.8.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-05 16:22:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "steven-murray",
"github_project": "powerbox",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "powerbox"
}