# ppg_package
这是一个用于处理和分析脉搏波形(PPG)信号的Python包。该包提供了一系列工具,用于信号的滤波、分析和可视化。
## 功能
`ppg_package` 包括以下主要功能:
- 快速傅里叶变换(FFT)分析
- 功率谱密度(PSD)分析
- 短时傅里叶变换(STFT)分析
- 连续小波变换(CWT)分析
- Poincaré图分析
- 计算PPG信号的多种统计量和特征
## 安装
您可以通过以下命令安装 `ppg_package`:
pip install ppg_package
Raw data
{
"_id": null,
"home_page": "https://github.com/zhuangjunyue/Deep-Learning-Network-for-Extracting-CO-from-PPG-Signals?tab=readme-ov-file",
"name": "ppg-package",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "PPG,signal processing,analysis,FFT,PSD,CWT",
"author": "JunYue Zhuang",
"author_email": "1505472915@qq.com",
"download_url": "https://files.pythonhosted.org/packages/a6/c6/fa7c71e6962000c52b1f44e39f8f541955138b7daa91713fe9b83b3e49c7/ppg_package-0.1.0.tar.gz",
"platform": null,
"description": "# ppg_package\n\n\u8fd9\u662f\u4e00\u4e2a\u7528\u4e8e\u5904\u7406\u548c\u5206\u6790\u8109\u640f\u6ce2\u5f62(PPG)\u4fe1\u53f7\u7684Python\u5305\u3002\u8be5\u5305\u63d0\u4f9b\u4e86\u4e00\u7cfb\u5217\u5de5\u5177\uff0c\u7528\u4e8e\u4fe1\u53f7\u7684\u6ee4\u6ce2\u3001\u5206\u6790\u548c\u53ef\u89c6\u5316\u3002\n\n## \u529f\u80fd\n\n`ppg_package` \u5305\u62ec\u4ee5\u4e0b\u4e3b\u8981\u529f\u80fd\uff1a\n\n- \u5feb\u901f\u5085\u91cc\u53f6\u53d8\u6362\uff08FFT\uff09\u5206\u6790\n- \u529f\u7387\u8c31\u5bc6\u5ea6\uff08PSD\uff09\u5206\u6790\n- \u77ed\u65f6\u5085\u91cc\u53f6\u53d8\u6362\uff08STFT\uff09\u5206\u6790\n- \u8fde\u7eed\u5c0f\u6ce2\u53d8\u6362\uff08CWT\uff09\u5206\u6790\n- Poincar\u00e9\u56fe\u5206\u6790\n- \u8ba1\u7b97PPG\u4fe1\u53f7\u7684\u591a\u79cd\u7edf\u8ba1\u91cf\u548c\u7279\u5f81\n\n## \u5b89\u88c5\n\n\u60a8\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u5b89\u88c5 `ppg_package`\uff1a\n\npip install ppg_package\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A comprehensive package for processing and analyzing PPG signals",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/zhuangjunyue/Deep-Learning-Network-for-Extracting-CO-from-PPG-Signals?tab=readme-ov-file"
},
"split_keywords": [
"ppg",
"signal processing",
"analysis",
"fft",
"psd",
"cwt"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3efee58d0bbdd7fdf638d5906793e795485e4d7f4888389ec16d109acab49c1e",
"md5": "2144d5d921bff665bc5d2c13808a9b0a",
"sha256": "b5e54453c5fb8549fbffbe762558f7dbf236748f451e8b73105ef2c09f52f79a"
},
"downloads": -1,
"filename": "ppg_package-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2144d5d921bff665bc5d2c13808a9b0a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17205,
"upload_time": "2024-02-21T03:38:19",
"upload_time_iso_8601": "2024-02-21T03:38:19.285748Z",
"url": "https://files.pythonhosted.org/packages/3e/fe/e58d0bbdd7fdf638d5906793e795485e4d7f4888389ec16d109acab49c1e/ppg_package-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a6c6fa7c71e6962000c52b1f44e39f8f541955138b7daa91713fe9b83b3e49c7",
"md5": "3f218e7877bc57829e54672b72cdd0cb",
"sha256": "f297dccda1b37053a698cf0f108db762d70961d4ad83841c24470f6e6d1dd269"
},
"downloads": -1,
"filename": "ppg_package-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "3f218e7877bc57829e54672b72cdd0cb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 11194,
"upload_time": "2024-02-21T03:38:21",
"upload_time_iso_8601": "2024-02-21T03:38:21.756363Z",
"url": "https://files.pythonhosted.org/packages/a6/c6/fa7c71e6962000c52b1f44e39f8f541955138b7daa91713fe9b83b3e49c7/ppg_package-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-21 03:38:21",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zhuangjunyue",
"github_project": "Deep-Learning-Network-for-Extracting-CO-from-PPG-Signals?tab=readme-ov-file",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ppg-package"
}