praisonaibench


Namepraisonaibench JSON
Version 0.0.3 PyPI version JSON
download
home_pageNone
SummarySimple LLM Benchmarking Tool using PraisonAI Agents
upload_time2025-08-30 07:28:30
maintainerMervinPraison
docs_urlNone
authorMervinPraison
requires_python>=3.8
licenseMIT
keywords agents ai benchmark llm testing
VCS
bugtrack_url
requirements praisonaiagents pyyaml
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PraisonAI Bench

🚀 **A simple, powerful LLM benchmarking tool built with PraisonAI Agents**

Benchmark any LiteLLM-compatible model with automatic HTML extraction, model-specific output organization, and flexible test suite management.

## ✨ Key Features

- 🎯 **Any LLM Model** - OpenAI, Anthropic, Google, XAI, local models via LiteLLM
- 🔄 **Single Agent Design** - Your prompt becomes the instruction (no complex configs)
- 💾 **Auto HTML Extraction** - Automatically saves HTML code from responses
- 📁 **Smart Organization** - Model-specific output folders (`output/gpt-4o/`, `output/xai/grok-code-fast-1/`)
- 🎛️ **Flexible Testing** - Run single tests, full suites, or filter specific tests
- ⚡ **Modern Tooling** - Built with `pyproject.toml` and `uv` package manager
- 📊 **Comprehensive Results** - JSON metrics with timing, success rates, and metadata

## 🚀 Quick Start

### 1. Install with uv (Recommended)

```bash
# Clone the repository
git clone https://github.com/MervinPraison/praisonaibench
cd praisonaibench

# Install with uv
uv sync

# Or install in development mode
uv pip install -e .
```

### 2. Alternative: Install with pip

```bash
pip install -e .
```

### 3. Set Your API Keys

```bash
# OpenAI
export OPENAI_API_KEY=your_openai_key

# XAI (Grok)
export XAI_API_KEY=your_xai_key

# Anthropic
export ANTHROPIC_API_KEY=your_anthropic_key

# Google
export GOOGLE_API_KEY=your_google_key
```

### 4. Run Your First Benchmark

```python
from praisonaibench import Bench

# Create benchmark suite
bench = Bench()

# Run a simple test
result = bench.run_single_test("What is 2+2?")
print(result['response'])

# Run with specific model
result = bench.run_single_test(
    "Create a rotating cube HTML file", 
    model="xai/grok-code-fast-1"
)

# Get summary
summary = bench.get_summary()
print(summary)
```

## 📁 Project Structure

```
praisonaibench/
├── pyproject.toml           # Modern Python packaging
├── src/praisonaibench/      # Source code
│   ├── __init__.py          # Main imports
│   ├── bench.py             # Core benchmarking engine
│   ├── agent.py             # LLM agent wrapper
│   ├── cli.py               # Command line interface
│   └── version.py           # Version info
├── examples/                # Example configurations
│   ├── threejs_simulation_suite.yaml
│   └── config_example.yaml
└── output/                  # Generated results
    ├── gpt-4o/             # Model-specific HTML files
    ├── xai/grok-code-fast-1/
    └── benchmark_results_*.json
```

## 💻 CLI Usage

### Basic Commands

```bash
# Single test with default model
praisonaibench --test "Explain quantum computing"

# Single test with specific model
praisonaibench --test "Write a poem" --model gpt-4o

# Use any LiteLLM-compatible model
praisonaibench --test "Create HTML" --model xai/grok-code-fast-1
praisonaibench --test "Write code" --model gemini/gemini-1.5-flash-8b
praisonaibench --test "Analyze data" --model claude-3-sonnet-20240229
```

### Test Suites

```bash
# Run entire test suite
praisonaibench --suite examples/threejs_simulation_suite.yaml

# Run specific test from suite
praisonaibench --suite examples/threejs_simulation_suite.yaml --test-name "rotating_cube_simulation"

# Run suite with specific model (overrides individual test models)
praisonaibench --suite tests.yaml --model xai/grok-code-fast-1
```

### Cross-Model Comparison

```bash
# Compare across multiple models
praisonaibench --cross-model "Write a poem" --models gpt-4o,gpt-3.5-turbo,xai/grok-code-fast-1
```

### Extract HTML from Results

```bash
# Extract HTML from existing benchmark results
praisonaibench --extract output/benchmark_results_20250829_160426.json
# → Processes JSON file and saves any HTML content to .html files

# Works with any benchmark results JSON file
praisonaibench --extract my_results.json
```

### HTML Generation Examples

```bash
# Generate Three.js simulation (auto-saves HTML)
praisonaibench --test "Create a rotating cube HTML with Three.js" --model gpt-4o
# → Saves to: output/gpt-4o/test_cube.html

# Run Three.js test suite
praisonaibench --suite examples/threejs_simulation_suite.yaml --model xai/grok-code-fast-1
# → Saves to: output/xai/grok-code-fast-1/rotating_cube_simulation.html
```

## 📋 Test Suite Format

### Basic Test Suite (`tests.yaml`)

```yaml
tests:
  - name: "math_test"
    prompt: "What is 15 * 23?"
  
  - name: "creative_test"
    prompt: "Write a short story about a robot"
  
  - name: "model_specific_test"
    prompt: "Explain quantum physics"
    model: "gpt-4o"
```

### Advanced Test Suite with Full Config Support

```yaml
# Global LLM configuration (applies to all tests)
config:
  max_tokens: 4000
  temperature: 0.7
  top_p: 0.9
  frequency_penalty: 0.0
  presence_penalty: 0.0
  # Any LiteLLM-compatible parameter is supported!

tests:
  - name: "creative_writing"
    prompt: "Write a detailed sci-fi story"
    model: "gpt-4o"
  
  - name: "code_generation"
    prompt: "Create a Python web scraper"
    model: "xai/grok-code-fast-1"
```

### Three.js HTML Generation Suite

```yaml
# examples/threejs_simulation_suite.yaml
tests:
  - name: "rotating_cube_simulation"
    prompt: |
      Create a complete HTML file with Three.js that displays a rotating 3D cube.
      The cube should have different colored faces, rotate continuously, and include proper lighting.
      The HTML file should be self-contained with Three.js loaded from CDN.
      Include camera controls for user interaction.
      Save the output as 'rotating_cube.html'.
    
  - name: "particle_system"
    prompt: |
      Create an HTML file with Three.js showing an animated particle system.
      Include 1000+ particles with random colors, movement, and physics.
      Add mouse interaction to influence particle behavior.
      
  - name: "terrain_simulation"
    prompt: |
      Create a Three.js HTML file with a procedurally generated terrain landscape.
      Include realistic textures, lighting, and a first-person camera.
      Add fog effects and animated elements.
      
  - name: "solar_system"
    prompt: |
      Create a Three.js solar system simulation in HTML.
      Include the sun, planets with realistic orbits, textures, and lighting.
      Add controls to speed up/slow down time.
```

## 🔧 Configuration

### Basic Configuration (`config.yaml`)

```yaml
# Default model (can be overridden per test)
default_model: "gpt-4o"

# Output settings
output_format: "json"
save_results: true
output_dir: "output"

# Performance settings
max_retries: 3
timeout: 60
```

### Supported Models

PraisonAI Bench supports **any LiteLLM-compatible model**:

```yaml
# OpenAI Models
- gpt-4o
- gpt-4o-mini
- gpt-3.5-turbo

# Anthropic Models
- claude-3-opus-20240229
- claude-3-sonnet-20240229
- claude-3-haiku-20240307

# Google Models
- gemini/gemini-1.5-pro
- gemini/gemini-1.5-flash
- gemini/gemini-1.5-flash-8b

# XAI Models
- xai/grok-beta
- xai/grok-code-fast-1

# Local Models (via LM Studio, Ollama, etc.)
- ollama/llama2
- openai/gpt-3.5-turbo  # with OPENAI_API_BASE set
```

## 📊 Results & Output

### Automatic HTML Extraction

When LLM responses contain HTML code blocks, they're automatically extracted and saved:

```
output/
├── gpt-4o/
│   ├── rotating_cube_simulation.html
│   └── particle_system.html
├── xai/
│   └── grok-code-fast-1/
│       ├── terrain_simulation.html
│       └── solar_system.html
└── benchmark_results_20250829_160426.json
```

### JSON Results Format

```json
[
  {
    "test_name": "rotating_cube_simulation",
    "prompt": "Create a complete HTML file with Three.js...",
    "response": "<!DOCTYPE html>\n<html>\n...",
    "model": "xai/grok-code-fast-1",
    "agent_name": "BenchAgent",
    "execution_time": 8.24,
    "status": "success",
    "timestamp": "2025-08-29 16:04:26"
  }
]
```

### Summary Statistics

```bash
📊 Summary:
   Total tests: 4
   Success rate: 100.0%
   Average time: 12.34s
Results saved to: output/benchmark_results_20250829_160426.json
```

## 🎯 Advanced Features

### 🔄 **Universal Model Support**
- Works with **any LiteLLM-compatible model**
- No hardcoded model restrictions
- Automatic API key detection

### 💾 **Smart HTML Handling**
- Auto-detects HTML in multiple formats:
  - Markdown-wrapped HTML (```html...```)
  - Truncated HTML blocks (incomplete responses)
  - Raw HTML content (direct HTML responses)
- Extracts and saves as `.html` files automatically
- Organizes by model in separate folders
- Extract HTML from existing benchmark results with `--extract`
- Perfect for Three.js, React, or any web development benchmarks

### 🎛️ **Flexible Test Management**
- Run entire suites or filter specific tests
- Override models per test or globally
- Cross-model comparisons with detailed metrics

### ⚡ **Modern Development**
- Built with `pyproject.toml` (no legacy `setup.py`)
- Optimized for `uv` package manager
- Fast dependency resolution and installation

### 🏗️ **Simple Architecture**
- **Single Agent Design** - Your prompt becomes the instruction
- **No Complex Configs** - Just write your test prompts
- **Minimal Dependencies** - Only what you need

## 🚀 Use Cases

### Web Development Benchmarking
```bash
# Test HTML/CSS/JS generation across models
praisonaibench --suite web_dev_suite.yaml --model gpt-4o
```

### Code Generation Comparison
```bash
# Compare coding abilities
praisonaibench --cross-model "Write a Python web scraper" --models gpt-4o,claude-3-sonnet-20240229,xai/grok-code-fast-1
```

### Creative Content Testing
```bash
# Test creative writing
praisonaibench --test "Write a sci-fi short story" --model gemini/gemini-1.5-pro
```

## 🤝 Contributing

1. Fork the repository
2. Create a feature branch: `git checkout -b feature-name`
3. Install dependencies: `uv sync`
4. Make your changes
5. Run tests: `uv run pytest`
6. Submit a pull request

## 📄 License

MIT License - see LICENSE file for details.

---

**Perfect for developers who need powerful, flexible LLM benchmarking with zero complexity!** 🚀

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "praisonaibench",
    "maintainer": "MervinPraison",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "agents, ai, benchmark, llm, testing",
    "author": "MervinPraison",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/52/00/d50fb8a310650b4d48ad12a880349e31a3d881d65b6e97aee5d359e194b7/praisonaibench-0.0.3.tar.gz",
    "platform": null,
    "description": "# PraisonAI Bench\n\n\ud83d\ude80 **A simple, powerful LLM benchmarking tool built with PraisonAI Agents**\n\nBenchmark any LiteLLM-compatible model with automatic HTML extraction, model-specific output organization, and flexible test suite management.\n\n## \u2728 Key Features\n\n- \ud83c\udfaf **Any LLM Model** - OpenAI, Anthropic, Google, XAI, local models via LiteLLM\n- \ud83d\udd04 **Single Agent Design** - Your prompt becomes the instruction (no complex configs)\n- \ud83d\udcbe **Auto HTML Extraction** - Automatically saves HTML code from responses\n- \ud83d\udcc1 **Smart Organization** - Model-specific output folders (`output/gpt-4o/`, `output/xai/grok-code-fast-1/`)\n- \ud83c\udf9b\ufe0f **Flexible Testing** - Run single tests, full suites, or filter specific tests\n- \u26a1 **Modern Tooling** - Built with `pyproject.toml` and `uv` package manager\n- \ud83d\udcca **Comprehensive Results** - JSON metrics with timing, success rates, and metadata\n\n## \ud83d\ude80 Quick Start\n\n### 1. Install with uv (Recommended)\n\n```bash\n# Clone the repository\ngit clone https://github.com/MervinPraison/praisonaibench\ncd praisonaibench\n\n# Install with uv\nuv sync\n\n# Or install in development mode\nuv pip install -e .\n```\n\n### 2. Alternative: Install with pip\n\n```bash\npip install -e .\n```\n\n### 3. Set Your API Keys\n\n```bash\n# OpenAI\nexport OPENAI_API_KEY=your_openai_key\n\n# XAI (Grok)\nexport XAI_API_KEY=your_xai_key\n\n# Anthropic\nexport ANTHROPIC_API_KEY=your_anthropic_key\n\n# Google\nexport GOOGLE_API_KEY=your_google_key\n```\n\n### 4. Run Your First Benchmark\n\n```python\nfrom praisonaibench import Bench\n\n# Create benchmark suite\nbench = Bench()\n\n# Run a simple test\nresult = bench.run_single_test(\"What is 2+2?\")\nprint(result['response'])\n\n# Run with specific model\nresult = bench.run_single_test(\n    \"Create a rotating cube HTML file\", \n    model=\"xai/grok-code-fast-1\"\n)\n\n# Get summary\nsummary = bench.get_summary()\nprint(summary)\n```\n\n## \ud83d\udcc1 Project Structure\n\n```\npraisonaibench/\n\u251c\u2500\u2500 pyproject.toml           # Modern Python packaging\n\u251c\u2500\u2500 src/praisonaibench/      # Source code\n\u2502   \u251c\u2500\u2500 __init__.py          # Main imports\n\u2502   \u251c\u2500\u2500 bench.py             # Core benchmarking engine\n\u2502   \u251c\u2500\u2500 agent.py             # LLM agent wrapper\n\u2502   \u251c\u2500\u2500 cli.py               # Command line interface\n\u2502   \u2514\u2500\u2500 version.py           # Version info\n\u251c\u2500\u2500 examples/                # Example configurations\n\u2502   \u251c\u2500\u2500 threejs_simulation_suite.yaml\n\u2502   \u2514\u2500\u2500 config_example.yaml\n\u2514\u2500\u2500 output/                  # Generated results\n    \u251c\u2500\u2500 gpt-4o/             # Model-specific HTML files\n    \u251c\u2500\u2500 xai/grok-code-fast-1/\n    \u2514\u2500\u2500 benchmark_results_*.json\n```\n\n## \ud83d\udcbb CLI Usage\n\n### Basic Commands\n\n```bash\n# Single test with default model\npraisonaibench --test \"Explain quantum computing\"\n\n# Single test with specific model\npraisonaibench --test \"Write a poem\" --model gpt-4o\n\n# Use any LiteLLM-compatible model\npraisonaibench --test \"Create HTML\" --model xai/grok-code-fast-1\npraisonaibench --test \"Write code\" --model gemini/gemini-1.5-flash-8b\npraisonaibench --test \"Analyze data\" --model claude-3-sonnet-20240229\n```\n\n### Test Suites\n\n```bash\n# Run entire test suite\npraisonaibench --suite examples/threejs_simulation_suite.yaml\n\n# Run specific test from suite\npraisonaibench --suite examples/threejs_simulation_suite.yaml --test-name \"rotating_cube_simulation\"\n\n# Run suite with specific model (overrides individual test models)\npraisonaibench --suite tests.yaml --model xai/grok-code-fast-1\n```\n\n### Cross-Model Comparison\n\n```bash\n# Compare across multiple models\npraisonaibench --cross-model \"Write a poem\" --models gpt-4o,gpt-3.5-turbo,xai/grok-code-fast-1\n```\n\n### Extract HTML from Results\n\n```bash\n# Extract HTML from existing benchmark results\npraisonaibench --extract output/benchmark_results_20250829_160426.json\n# \u2192 Processes JSON file and saves any HTML content to .html files\n\n# Works with any benchmark results JSON file\npraisonaibench --extract my_results.json\n```\n\n### HTML Generation Examples\n\n```bash\n# Generate Three.js simulation (auto-saves HTML)\npraisonaibench --test \"Create a rotating cube HTML with Three.js\" --model gpt-4o\n# \u2192 Saves to: output/gpt-4o/test_cube.html\n\n# Run Three.js test suite\npraisonaibench --suite examples/threejs_simulation_suite.yaml --model xai/grok-code-fast-1\n# \u2192 Saves to: output/xai/grok-code-fast-1/rotating_cube_simulation.html\n```\n\n## \ud83d\udccb Test Suite Format\n\n### Basic Test Suite (`tests.yaml`)\n\n```yaml\ntests:\n  - name: \"math_test\"\n    prompt: \"What is 15 * 23?\"\n  \n  - name: \"creative_test\"\n    prompt: \"Write a short story about a robot\"\n  \n  - name: \"model_specific_test\"\n    prompt: \"Explain quantum physics\"\n    model: \"gpt-4o\"\n```\n\n### Advanced Test Suite with Full Config Support\n\n```yaml\n# Global LLM configuration (applies to all tests)\nconfig:\n  max_tokens: 4000\n  temperature: 0.7\n  top_p: 0.9\n  frequency_penalty: 0.0\n  presence_penalty: 0.0\n  # Any LiteLLM-compatible parameter is supported!\n\ntests:\n  - name: \"creative_writing\"\n    prompt: \"Write a detailed sci-fi story\"\n    model: \"gpt-4o\"\n  \n  - name: \"code_generation\"\n    prompt: \"Create a Python web scraper\"\n    model: \"xai/grok-code-fast-1\"\n```\n\n### Three.js HTML Generation Suite\n\n```yaml\n# examples/threejs_simulation_suite.yaml\ntests:\n  - name: \"rotating_cube_simulation\"\n    prompt: |\n      Create a complete HTML file with Three.js that displays a rotating 3D cube.\n      The cube should have different colored faces, rotate continuously, and include proper lighting.\n      The HTML file should be self-contained with Three.js loaded from CDN.\n      Include camera controls for user interaction.\n      Save the output as 'rotating_cube.html'.\n    \n  - name: \"particle_system\"\n    prompt: |\n      Create an HTML file with Three.js showing an animated particle system.\n      Include 1000+ particles with random colors, movement, and physics.\n      Add mouse interaction to influence particle behavior.\n      \n  - name: \"terrain_simulation\"\n    prompt: |\n      Create a Three.js HTML file with a procedurally generated terrain landscape.\n      Include realistic textures, lighting, and a first-person camera.\n      Add fog effects and animated elements.\n      \n  - name: \"solar_system\"\n    prompt: |\n      Create a Three.js solar system simulation in HTML.\n      Include the sun, planets with realistic orbits, textures, and lighting.\n      Add controls to speed up/slow down time.\n```\n\n## \ud83d\udd27 Configuration\n\n### Basic Configuration (`config.yaml`)\n\n```yaml\n# Default model (can be overridden per test)\ndefault_model: \"gpt-4o\"\n\n# Output settings\noutput_format: \"json\"\nsave_results: true\noutput_dir: \"output\"\n\n# Performance settings\nmax_retries: 3\ntimeout: 60\n```\n\n### Supported Models\n\nPraisonAI Bench supports **any LiteLLM-compatible model**:\n\n```yaml\n# OpenAI Models\n- gpt-4o\n- gpt-4o-mini\n- gpt-3.5-turbo\n\n# Anthropic Models\n- claude-3-opus-20240229\n- claude-3-sonnet-20240229\n- claude-3-haiku-20240307\n\n# Google Models\n- gemini/gemini-1.5-pro\n- gemini/gemini-1.5-flash\n- gemini/gemini-1.5-flash-8b\n\n# XAI Models\n- xai/grok-beta\n- xai/grok-code-fast-1\n\n# Local Models (via LM Studio, Ollama, etc.)\n- ollama/llama2\n- openai/gpt-3.5-turbo  # with OPENAI_API_BASE set\n```\n\n## \ud83d\udcca Results & Output\n\n### Automatic HTML Extraction\n\nWhen LLM responses contain HTML code blocks, they're automatically extracted and saved:\n\n```\noutput/\n\u251c\u2500\u2500 gpt-4o/\n\u2502   \u251c\u2500\u2500 rotating_cube_simulation.html\n\u2502   \u2514\u2500\u2500 particle_system.html\n\u251c\u2500\u2500 xai/\n\u2502   \u2514\u2500\u2500 grok-code-fast-1/\n\u2502       \u251c\u2500\u2500 terrain_simulation.html\n\u2502       \u2514\u2500\u2500 solar_system.html\n\u2514\u2500\u2500 benchmark_results_20250829_160426.json\n```\n\n### JSON Results Format\n\n```json\n[\n  {\n    \"test_name\": \"rotating_cube_simulation\",\n    \"prompt\": \"Create a complete HTML file with Three.js...\",\n    \"response\": \"<!DOCTYPE html>\\n<html>\\n...\",\n    \"model\": \"xai/grok-code-fast-1\",\n    \"agent_name\": \"BenchAgent\",\n    \"execution_time\": 8.24,\n    \"status\": \"success\",\n    \"timestamp\": \"2025-08-29 16:04:26\"\n  }\n]\n```\n\n### Summary Statistics\n\n```bash\n\ud83d\udcca Summary:\n   Total tests: 4\n   Success rate: 100.0%\n   Average time: 12.34s\nResults saved to: output/benchmark_results_20250829_160426.json\n```\n\n## \ud83c\udfaf Advanced Features\n\n### \ud83d\udd04 **Universal Model Support**\n- Works with **any LiteLLM-compatible model**\n- No hardcoded model restrictions\n- Automatic API key detection\n\n### \ud83d\udcbe **Smart HTML Handling**\n- Auto-detects HTML in multiple formats:\n  - Markdown-wrapped HTML (```html...```)\n  - Truncated HTML blocks (incomplete responses)\n  - Raw HTML content (direct HTML responses)\n- Extracts and saves as `.html` files automatically\n- Organizes by model in separate folders\n- Extract HTML from existing benchmark results with `--extract`\n- Perfect for Three.js, React, or any web development benchmarks\n\n### \ud83c\udf9b\ufe0f **Flexible Test Management**\n- Run entire suites or filter specific tests\n- Override models per test or globally\n- Cross-model comparisons with detailed metrics\n\n### \u26a1 **Modern Development**\n- Built with `pyproject.toml` (no legacy `setup.py`)\n- Optimized for `uv` package manager\n- Fast dependency resolution and installation\n\n### \ud83c\udfd7\ufe0f **Simple Architecture**\n- **Single Agent Design** - Your prompt becomes the instruction\n- **No Complex Configs** - Just write your test prompts\n- **Minimal Dependencies** - Only what you need\n\n## \ud83d\ude80 Use Cases\n\n### Web Development Benchmarking\n```bash\n# Test HTML/CSS/JS generation across models\npraisonaibench --suite web_dev_suite.yaml --model gpt-4o\n```\n\n### Code Generation Comparison\n```bash\n# Compare coding abilities\npraisonaibench --cross-model \"Write a Python web scraper\" --models gpt-4o,claude-3-sonnet-20240229,xai/grok-code-fast-1\n```\n\n### Creative Content Testing\n```bash\n# Test creative writing\npraisonaibench --test \"Write a sci-fi short story\" --model gemini/gemini-1.5-pro\n```\n\n## \ud83e\udd1d Contributing\n\n1. Fork the repository\n2. Create a feature branch: `git checkout -b feature-name`\n3. Install dependencies: `uv sync`\n4. Make your changes\n5. Run tests: `uv run pytest`\n6. Submit a pull request\n\n## \ud83d\udcc4 License\n\nMIT License - see LICENSE file for details.\n\n---\n\n**Perfect for developers who need powerful, flexible LLM benchmarking with zero complexity!** \ud83d\ude80\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Simple LLM Benchmarking Tool using PraisonAI Agents",
    "version": "0.0.3",
    "project_urls": {
        "Documentation": "https://github.com/MervinPraison/praisonaibench#readme",
        "Homepage": "https://github.com/MervinPraison/praisonaibench",
        "Issues": "https://github.com/MervinPraison/praisonaibench/issues",
        "Repository": "https://github.com/MervinPraison/praisonaibench"
    },
    "split_keywords": [
        "agents",
        " ai",
        " benchmark",
        " llm",
        " testing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a103a536f7d076c745e04735edbd1c3a8431077568a74e266b89b61b7802d989",
                "md5": "b50a4ecf1002f9a5e1e4bcc44a690e77",
                "sha256": "5c91e211d9bc29af7f8429ca94854051e47fcee768274e7e112c1365df9c7cb2"
            },
            "downloads": -1,
            "filename": "praisonaibench-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b50a4ecf1002f9a5e1e4bcc44a690e77",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13147,
            "upload_time": "2025-08-30T07:28:29",
            "upload_time_iso_8601": "2025-08-30T07:28:29.510501Z",
            "url": "https://files.pythonhosted.org/packages/a1/03/a536f7d076c745e04735edbd1c3a8431077568a74e266b89b61b7802d989/praisonaibench-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5200d50fb8a310650b4d48ad12a880349e31a3d881d65b6e97aee5d359e194b7",
                "md5": "81a5f2d59d57dbf8a2b20ce7c96acdaf",
                "sha256": "86e95ba368da2aed434def752fe98a819351f0911fdf369a8b8013b393106cf7"
            },
            "downloads": -1,
            "filename": "praisonaibench-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "81a5f2d59d57dbf8a2b20ce7c96acdaf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 14376,
            "upload_time": "2025-08-30T07:28:30",
            "upload_time_iso_8601": "2025-08-30T07:28:30.743505Z",
            "url": "https://files.pythonhosted.org/packages/52/00/d50fb8a310650b4d48ad12a880349e31a3d881d65b6e97aee5d359e194b7/praisonaibench-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-30 07:28:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MervinPraison",
    "github_project": "praisonaibench#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "praisonaiagents",
            "specs": [
                [
                    ">=",
                    "0.0.1"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    ">=",
                    "6.0"
                ]
            ]
        }
    ],
    "lcname": "praisonaibench"
}
        
Elapsed time: 0.73426s