precision-recall-gain


Nameprecision-recall-gain JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/crypdick/precision-recall-gain
SummaryPrecision-recall-gain curves for Python
upload_time2024-02-17 01:22:19
maintainer
docs_urlNone
authorRichard Decal
requires_python>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            ========
Overview
========



Precision-recall-gain curves for Python

* Free software: MIT license

Installation
============

::

    pip install precision-recall-gain

You can also install the in-development version with::

    pip install https://github.com/crypdick/precision-recall-gain/archive/master.zip


Documentation
=============


https://precision-recall-gain.readthedocs.io/


Development
===========

To run all the tests run::

    tox

Note, to combine the coverage data from all the tox environments run:

.. list-table::
    :widths: 10 90
    :stub-columns: 1

    - - Windows
      - ::

            set PYTEST_ADDOPTS=--cov-append
            tox

    - - Other
      - ::

            PYTEST_ADDOPTS=--cov-append tox

References
===========
* [Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter A. Flach and Meelis Kull](https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf)
* [sklearn-compatible implementation](https://github.com/scikit-learn/scikit-learn/pull/24121) by [Bradley Fowler](https://github.com/bradleyfowler123)
* [PRG curves](https://www.biostat.wisc.edu/~page/rocprg.pdf) by [David Page](https://www.biostat.wisc.edu/~page/)
* [Blog post by Bradley Fowler](https://snorkel.ai/improving-upon-precision-recall-and-f1-with-gain-metrics/)
* [Original implementation](https://github.com/meeliskull/prg) by [Meelis Kull](https://github.com/meeliskull)


Changelog
=========

0.0.0 (2021-03-20)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/crypdick/precision-recall-gain",
    "name": "precision-recall-gain",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "",
    "author": "Richard Decal",
    "author_email": "public@richarddecal.com",
    "download_url": "https://files.pythonhosted.org/packages/e7/17/f06820fcafe93299d1277ce6ff52139b54056cf2f8932b7c5613a5fbbdaf/precision-recall-gain-0.1.1.tar.gz",
    "platform": null,
    "description": "========\nOverview\n========\n\n\n\nPrecision-recall-gain curves for Python\n\n* Free software: MIT license\n\nInstallation\n============\n\n::\n\n    pip install precision-recall-gain\n\nYou can also install the in-development version with::\n\n    pip install https://github.com/crypdick/precision-recall-gain/archive/master.zip\n\n\nDocumentation\n=============\n\n\nhttps://precision-recall-gain.readthedocs.io/\n\n\nDevelopment\n===========\n\nTo run all the tests run::\n\n    tox\n\nNote, to combine the coverage data from all the tox environments run:\n\n.. list-table::\n    :widths: 10 90\n    :stub-columns: 1\n\n    - - Windows\n      - ::\n\n            set PYTEST_ADDOPTS=--cov-append\n            tox\n\n    - - Other\n      - ::\n\n            PYTEST_ADDOPTS=--cov-append tox\n\nReferences\n===========\n* [Precision-Recall-Gain Curves: PR Analysis Done Right (2015) by Peter A. Flach and Meelis Kull](https://papers.nips.cc/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf)\n* [sklearn-compatible implementation](https://github.com/scikit-learn/scikit-learn/pull/24121) by [Bradley Fowler](https://github.com/bradleyfowler123)\n* [PRG curves](https://www.biostat.wisc.edu/~page/rocprg.pdf) by [David Page](https://www.biostat.wisc.edu/~page/)\n* [Blog post by Bradley Fowler](https://snorkel.ai/improving-upon-precision-recall-and-f1-with-gain-metrics/)\n* [Original implementation](https://github.com/meeliskull/prg) by [Meelis Kull](https://github.com/meeliskull)\n\n\nChangelog\n=========\n\n0.0.0 (2021-03-20)\n------------------\n\n* First release on PyPI.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Precision-recall-gain curves for Python",
    "version": "0.1.1",
    "project_urls": {
        "Changelog": "https://precision-recall-gain.readthedocs.io/en/latest/changelog.html",
        "Documentation": "https://precision-recall-gain.readthedocs.io/",
        "Homepage": "https://github.com/crypdick/precision-recall-gain",
        "Issue Tracker": "https://github.com/crypdick/precision-recall-gain/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e717f06820fcafe93299d1277ce6ff52139b54056cf2f8932b7c5613a5fbbdaf",
                "md5": "90fc464cc9986c09520f5508192325fb",
                "sha256": "3431e02edcbe7b2254b53ab4447e42e409dea8060efaf259e8378eb9e23816d1"
            },
            "downloads": -1,
            "filename": "precision-recall-gain-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "90fc464cc9986c09520f5508192325fb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 29249,
            "upload_time": "2024-02-17T01:22:19",
            "upload_time_iso_8601": "2024-02-17T01:22:19.501428Z",
            "url": "https://files.pythonhosted.org/packages/e7/17/f06820fcafe93299d1277ce6ff52139b54056cf2f8932b7c5613a5fbbdaf/precision-recall-gain-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-17 01:22:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "crypdick",
    "github_project": "precision-recall-gain",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "tox": true,
    "lcname": "precision-recall-gain"
}
        
Elapsed time: 0.20114s