Name | prediction-btc JSON |
Version |
0.0.1
JSON |
| download |
home_page | None |
Summary | A small example package |
upload_time | 2025-01-18 21:36:22 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
prediction
bitcoin
ai
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Prediction_BTC Package untuk menganalisis sentimen Bitcoin dari teks menggunakan preprocessing, tokenization, dan model machine learning.
## Fitur Utama
- Membersihkan teks dari noise seperti tanda baca dan angka.
- Tokenisasi teks dengan padding otomatis.
- Analisis sentimen menggunakan model machine learning terlatih.
- Mendukung klasifikasi sentimen positif dan negatif.
## Instalasi Gunakan pip untuk menginstal package ini: pip install prediction_btc
## Penggunaan Berikut adalah contoh sederhana penggunaan package ini: python from prediction_btc import full_prediction
# Teks yang ingin dianalisis text = ["Bitcoin is the future!", "The market is crashing!"]
# Prediksi sentimen result = full_prediction(text) print(result)
## Dependencies Package ini membutuhkan library berikut:
- Python 3.7+
- TensorFlow
- Numpy
- Pandas
- Scikit-learn
- Joblib
## Lisensi Project ini dirilis di bawah lisensi MIT.
## Kontak Jika memiliki pertanyaan atau feedback, silakan hubungi saya: Komang Nitay Prasaddas Email: nitay06@students.amikom.ac.id
Raw data
{
"_id": null,
"home_page": null,
"name": "prediction-btc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "prediction, bitcoin, ai",
"author": null,
"author_email": "Komang Nitay Prasaddas <nitay06@students.amikom.ac.id>",
"download_url": "https://files.pythonhosted.org/packages/11/79/cf2a059912ac08e2caffeb1366f77bf1780152124c5281719cf026341888/prediction_btc-0.0.1.tar.gz",
"platform": null,
"description": "## Prediction_BTC Package untuk menganalisis sentimen Bitcoin dari teks menggunakan preprocessing, tokenization, dan model machine learning. \r\n\r\n## Fitur Utama \r\n- Membersihkan teks dari noise seperti tanda baca dan angka. \r\n- Tokenisasi teks dengan padding otomatis. \r\n- Analisis sentimen menggunakan model machine learning terlatih. \r\n- Mendukung klasifikasi sentimen positif dan negatif. \r\n\r\n## Instalasi Gunakan pip untuk menginstal package ini: pip install prediction_btc \r\n\r\n## Penggunaan Berikut adalah contoh sederhana penggunaan package ini: python from prediction_btc import full_prediction \r\n\r\n# Teks yang ingin dianalisis text = [\"Bitcoin is the future!\", \"The market is crashing!\"] \r\n# Prediksi sentimen result = full_prediction(text) print(result) \r\n\r\n## Dependencies Package ini membutuhkan library berikut: \r\n- Python 3.7+ \r\n- TensorFlow \r\n- Numpy \r\n- Pandas \r\n- Scikit-learn \r\n- Joblib \r\n\r\n## Lisensi Project ini dirilis di bawah lisensi MIT. \r\n## Kontak Jika memiliki pertanyaan atau feedback, silakan hubungi saya: Komang Nitay Prasaddas Email: nitay06@students.amikom.ac.id\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A small example package",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/pypa/sampleproject",
"Issues": "https://github.com/pypa/sampleproject/issues"
},
"split_keywords": [
"prediction",
" bitcoin",
" ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "26924ab2569343b9e52fb6c9dc0d4cd9e108fed16c0ba926d8eb6d2432d859a3",
"md5": "6fc539c693998bf418b62630be83e5a7",
"sha256": "e90dca41f6ab676f5a1037ab3eac119a975824d6f17f2243be6658adb1d4698d"
},
"downloads": -1,
"filename": "prediction_btc-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6fc539c693998bf418b62630be83e5a7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 96085762,
"upload_time": "2025-01-18T21:35:55",
"upload_time_iso_8601": "2025-01-18T21:35:55.245804Z",
"url": "https://files.pythonhosted.org/packages/26/92/4ab2569343b9e52fb6c9dc0d4cd9e108fed16c0ba926d8eb6d2432d859a3/prediction_btc-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1179cf2a059912ac08e2caffeb1366f77bf1780152124c5281719cf026341888",
"md5": "332717ce43aa5376b4709ad516337061",
"sha256": "b1b4daadb5eed8fe671faedd4fe6b56f2367ab4da7c5b305423840ef6330124c"
},
"downloads": -1,
"filename": "prediction_btc-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "332717ce43aa5376b4709ad516337061",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 96089730,
"upload_time": "2025-01-18T21:36:22",
"upload_time_iso_8601": "2025-01-18T21:36:22.038932Z",
"url": "https://files.pythonhosted.org/packages/11/79/cf2a059912ac08e2caffeb1366f77bf1780152124c5281719cf026341888/prediction_btc-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 21:36:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pypa",
"github_project": "sampleproject",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "prediction-btc"
}