# Predictive Modeling Auto
Welcome to the Predictive Modeling Auto repository. This project aims to automate predictive modeling tasks using Python and its robust data science libraries.
## Table of Contents
- [Introduction](#introduction)
- [Features](#features)
- [Installation](#installation)
- [Usage](#usage)
- [Contributing](#contributing)
- [License](#license)
- [Contact](#contact)
## Introduction
Predictive Modeling Auto is a Python project designed to streamline the process of building and evaluating predictive models. It leverages popular libraries such as Pandas, NumPy, Scikit-learn, and PyCaret to automate various steps in the modeling pipeline.
## Features
- **Data Preprocessing:** Automated handling of missing values, feature scaling, and encoding.
- **Model Training:** Automated model selection, training, and hyperparameter tuning.
- **Model Evaluation:** Comprehensive evaluation metrics and visualizations.
- **User-Friendly Interface:** Simple and intuitive user interface for ease of use.
## Installation
To clone and run this project, you'll need Python installed on your system. You can clone the repository and install the dependencies using the following commands:
```bash
# Clone the repository
git clone https://github.com/ashishs1407/predictive_modeling_auto.git
# Navigate to the project directory
cd predictive_modeling_auto
# Install the required packages
pip install -r requirements.txt
```
## Usage
Here is a simple example of how to use this project:
```Python
from predictive_modeling_auto import ModelPipeline
# Initialize the pipeline
pipeline = ModelPipeline()
# Load your dataset
data = pipeline.load_data('path/to/your/dataset.csv')
# Preprocess the data
data = pipeline.preprocess_data(data)
# Train the model
model = pipeline.train_model(data)
# Evaluate the model
pipeline.evaluate_model(model, data)
For more detailed usage instructions, refer to the documentation in the docs directory.
```
## Contributing
Contributions are welcome! Please read the CONTRIBUTING.md file for guidelines on how to contribute to this project.
## License
This project is licensed under the MIT License. See the LICENSE file for more details.
## Contact
If you have any questions or suggestions, feel free to reach out:
- **Author:** Ashish Shimpi
- **Email:** a.shimpi93@gmail.com
- **GitHub:** ashishs1407
Raw data
{
"_id": null,
"home_page": "https://github.com/ashishs1407/predictive_modeling_auto",
"name": "predictive-modeling-auto",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Ashish Shimpi",
"author_email": "a.shimpi93@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b1/ac/fc275881999823c2882b31d981b646d659468afffc89bc388d4002b078a7/predictive_modeling_auto-0.2.1.tar.gz",
"platform": null,
"description": "# Predictive Modeling Auto\n\nWelcome to the Predictive Modeling Auto repository. This project aims to automate predictive modeling tasks using Python and its robust data science libraries.\n\n## Table of Contents\n- [Introduction](#introduction)\n- [Features](#features)\n- [Installation](#installation)\n- [Usage](#usage)\n- [Contributing](#contributing)\n- [License](#license)\n- [Contact](#contact)\n\n## Introduction\nPredictive Modeling Auto is a Python project designed to streamline the process of building and evaluating predictive models. It leverages popular libraries such as Pandas, NumPy, Scikit-learn, and PyCaret to automate various steps in the modeling pipeline.\n\n## Features\n- **Data Preprocessing:** Automated handling of missing values, feature scaling, and encoding.\n- **Model Training:** Automated model selection, training, and hyperparameter tuning.\n- **Model Evaluation:** Comprehensive evaluation metrics and visualizations.\n- **User-Friendly Interface:** Simple and intuitive user interface for ease of use.\n\n## Installation\nTo clone and run this project, you'll need Python installed on your system. You can clone the repository and install the dependencies using the following commands:\n\n```bash\n# Clone the repository\ngit clone https://github.com/ashishs1407/predictive_modeling_auto.git\n\n# Navigate to the project directory\ncd predictive_modeling_auto\n\n# Install the required packages\npip install -r requirements.txt\n```\n## Usage\nHere is a simple example of how to use this project:\n```Python\nfrom predictive_modeling_auto import ModelPipeline\n\n# Initialize the pipeline\npipeline = ModelPipeline()\n\n# Load your dataset\ndata = pipeline.load_data('path/to/your/dataset.csv')\n\n# Preprocess the data\ndata = pipeline.preprocess_data(data)\n\n# Train the model\nmodel = pipeline.train_model(data)\n\n# Evaluate the model\npipeline.evaluate_model(model, data)\nFor more detailed usage instructions, refer to the documentation in the docs directory.\n```\n\n\n## Contributing\nContributions are welcome! Please read the CONTRIBUTING.md file for guidelines on how to contribute to this project.\n\n## License\nThis project is licensed under the MIT License. See the LICENSE file for more details.\n\n## Contact\nIf you have any questions or suggestions, feel free to reach out:\n\n- **Author:** Ashish Shimpi\n- **Email:** a.shimpi93@gmail.com\n- **GitHub:** ashishs1407\n",
"bugtrack_url": null,
"license": null,
"summary": "A package for automating predictive modeling tasks using Python",
"version": "0.2.1",
"project_urls": {
"Homepage": "https://github.com/ashishs1407/predictive_modeling_auto",
"Source": "https://github.com/ashishs1407/predictive_modeling_auto",
"Tracker": "https://github.com/ashishs1407/predictive_modeling_auto/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7d26cda75b883ef58104d5087397096bde83d2b3c55262d6574af80d81e3cfed",
"md5": "e2dbb2160f484ff03aaff2f093fd47aa",
"sha256": "9c0023fed35a4c0c68a0e96bc47e4f847fdf8a76aacc2e6d978a5893349110ae"
},
"downloads": -1,
"filename": "predictive_modeling_auto-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e2dbb2160f484ff03aaff2f093fd47aa",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 4095,
"upload_time": "2025-01-17T14:37:51",
"upload_time_iso_8601": "2025-01-17T14:37:51.096254Z",
"url": "https://files.pythonhosted.org/packages/7d/26/cda75b883ef58104d5087397096bde83d2b3c55262d6574af80d81e3cfed/predictive_modeling_auto-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b1acfc275881999823c2882b31d981b646d659468afffc89bc388d4002b078a7",
"md5": "22728968ef741b50b69f196a9a038d94",
"sha256": "161871db90d7bd33ee4db8a6b58bdf0cd83893d41f8e82776d9f2330a671a1a4"
},
"downloads": -1,
"filename": "predictive_modeling_auto-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "22728968ef741b50b69f196a9a038d94",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 3642,
"upload_time": "2025-01-17T14:37:53",
"upload_time_iso_8601": "2025-01-17T14:37:53.362983Z",
"url": "https://files.pythonhosted.org/packages/b1/ac/fc275881999823c2882b31d981b646d659468afffc89bc388d4002b078a7/predictive_modeling_auto-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-17 14:37:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ashishs1407",
"github_project": "predictive_modeling_auto",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "predictive-modeling-auto"
}