proadv


Nameproadv JSON
Version 2.1.4 PyPI version JSON
download
home_pagehttps://github.com/farzadasgari/proadv
SummaryProcess Acoustic Doppler Velocimeter data with advanced despiking and analysis tools
upload_time2024-08-02 22:22:24
maintainerNone
docs_urlNone
authorFarzad Asgari
requires_pythonNone
licenseNone
keywords proadv python signal processing data processing acoustic doppler velocimeter adv denoising despiking
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
   <h1>ProADV - Process Acoustic Doppler Velocimeter</h1>
</div>

![readmeimage](https://raw.githubusercontent.com/farzadasgari/proadv/2919aa78fe5d02b540bc8386f7d1af10b5182d4e/examples/plots/readme.jpg)

[![GitHub stars](https://img.shields.io/github/stars/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/stargazers)
[![GitHub forks](https://img.shields.io/github/forks/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/network)
[![GitHub issues](https://img.shields.io/github/issues/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/issues)
[![GitHub license](https://img.shields.io/github/license/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/blob/main/LICENSE)
[![PyPI version](https://img.shields.io/pypi/v/proadv.svg)](https://pypi.org/project/proadv/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/proadv.svg)](https://pypi.org/project/proadv/)
[![GitHub contributors](https://img.shields.io/github/contributors/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/graphs/contributors)
[![GitHub pull requests](https://img.shields.io/github/issues-pr/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/pulls)
[![GitHub closed pull requests](https://img.shields.io/github/issues-pr-closed/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/pulls?q=is%3Apr+is%3Aclosed)
[![GitHub last commit](https://img.shields.io/github/last-commit/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/commits/main)


## Streamline Your ADV Data Analysis

**ProADV** is a comprehensive Python package designed to empower researchers and engineers working with acoustic Doppler velocimeter (ADV) data. It offers a comprehensive suite of tools for efficient cleaning, analysis, and visualization of ADV data, streamlining your workflow and extracting valuable insights from your measurements.

### Key Features

* **Despiking and Denoising:** ProADV tackles the challenge of spikes and noise in ADV data, providing a variety of robust algorithms for effective data cleaning. 
    * **Spike Detection:** 
        * **ACC (Acceleration Thresholding):** Identifies spikes based on exceeding a user-defined acceleration threshold.
        * **PST (Phase-Space Thresholding):** Utilizes a combination of velocity and its temporal derivative to detect spikes.
        * **mPST (Modified Phase-Space Thresholding):** An enhanced version of PST with improved sensitivity.
        * **VC (Velocity Correlation):** Detects spikes based on deviations from the correlation between neighboring data points.
        * **KDE (Kernel Density Estimation):** Employs a statistical approach to identify outliers based on the probability density function. 
        * **3d-KDE (Three-dimensional Kernel Density Estimation):** Extends KDE to three dimensions for more robust spike detection in complex data.
        * **m3d-KDE (Modified Three-dimensional Kernel Density Estimation):** Further refines 3d-KDE for enhanced performance.
    * **Replacement Methods:** ProADV offers several options to replace detected spikes with more reliable values:
        * **LVD (Last Valid Data):** Replaces spikes with the last valid data point before the spike.
        *  **MV (Mean Value):** Replaces spikes with the mean value of velocity component. 
        * **LI (Linear Interpolation):** Uses linear interpolation between surrounding points to estimate the missing value.
        * **12PP (12 Points Cubic Polynomial):** Employs a 12-point cubic polynomial to fit a smoother curve and replace spikes.


<div align="center">
   <img src="https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/trivariate-kernel.png" alt="trivariate-kernel" style="width:300px;"/>
   <img src="https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/spectrum.png" alt="trivariate-kernel" style="width:300px;"/>
   <img src="https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/phase-space.png" alt="trivariate-kernel" style="width:300px;"/>
</div>


* **Statistical Analysis:** ProADV equips you with essential statistical tools to characterize your ADV data:
    * **Minimum, Maximum:** Provides the range of measured velocities.
    * **Mean, Median, Mode:** Calculates central tendency measures.
    * **Skewness, Kurtosis:** Analyzes the distribution characteristics of your data.

* **Advanced Analysis:** In addition to cleaning and basic statistics, ProADV offers advanced functionalities for deeper insights:
    * **Moving Average:** Smooths out data fluctuations for better visualization and trend analysis. Provided in simple moving average, exponential moving average, and weighted moving average methods. 
    * **SSA (Singular Spectrum Analysis):** Extracts underlying patterns and trends from time series data.
    * **Kalman Filter:** Implements the Kalman filter algorithm for state estimation and prediction in time series data. 
    * **PR (Pollution Rate) Calculation:** Estimates the level of noise or pollution within the data.
    * **Spectral Analysis:**
        * **PSD (Power Spectral Density):** Analyzes the distribution of energy across different frequencies within the data.
        * **PDF (Probability Density Function):** Provides the probability of encountering specific velocity values.
    * **Normality Test:** Evaluates whether your data follows a normal distribution.
    * **Normalization:** Scales data to a common range for further analysis or visualization.

<div align="center">
   <img src="https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/singular-spectrum.png" alt="singular-spectrum" style="width:300px;"/>
   <img src="https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/kalman.png" alt="kalman-filter" style="width:300px;"/>
</div>

### Installation

There are two convenient ways to install ProADV:

1. **Using pip (recommended):**
   ```bash
   pip install proadv
   ```

2. **From source code:**

   a. Clone the repository:
      ```bash
      git clone https://github.com/farzadasgari/proadv.git
      ```
   b. Navigate to the project directory:
      ```bash
      cd proadv
      ```
   c. Install using setup.py:
      ```bash
      python setup.py install
      ```

### Collaboration

We encourage collaboration and contributions from the community to improve ProADV. Here's how to contribute:

1. Fork the repository on GitHub.
2. Clone your forked repository to your local machine.
3. Create a new branch for your changes.
4. Make your changes and commit them with descriptive messages.
5. Push your changes to your forked repository.
6. Submit a pull request for review and merging.

### References

For further information and in-depth understanding of the algorithms employed in ProADV, refer to the following resources:

1. [Exploring the role of signal pollution rate on the performance of despiking velocity time-series algorithms](https://doi.org/10.1016/j.flowmeasinst.2023.102485)
2. [Unleashing the power of three-dimensional kernel density estimation for Doppler Velocimeter data despiking](https://doi.org/10.1016/j.measurement.2023.114053)


### Acknowledgment
- This project was developed under the supervision of **[Dr. Seyed Hossein Mohaeri](https://khu.ac.ir/cv/1139/Seyed-Hossein-Mohajeri)** and **[Dr. Mojtaba Mehraein](https://khu.ac.ir/cv/279/Mojtaba-Mehraein)**.
- We extend our deepest gratitude to **[Dr. Bimlesh Kumar](https://www.researchgate.net/profile/Bimlesh-Kumar)** and **[Dr. Luis Cea](https://www.researchgate.net/profile/Luis-Cea)** for their invaluable guidance and unwavering support throughout our journey.
- Special thanks to [Narges Yaghoubi](https://github.com/nargesyaghoubi), [Hiva Yarandi](https://github.com/Hivayrn), [Mojtaba Karimi](https://github.com/mojikarimi), [Parvaneh Yaghoubi](https://github.com/parvanehyaghoubi), [Hossein Abazari](https://github.com/HossA12), and [Zahra Rezaei](https://github.com/ZahraRezaei672) for their valuable contributions to this project.


### Contact
For any inquiries, please contact:
- std_farzad.asgari@alumni.khu.ac.ir
- khufarzadasgari@gmail.com


### Links

##### Farzad Asgari
[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://farzadasgari.ir/)

[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=Rhue_kkAAAAJ&hl=en)

[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://www.researchgate.net/profile/Farzad-Asgari)

[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/farzad-asgari-5a90942b2/)


##### Seyed Hossein Mohajeri
[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://khu.ac.ir/cv/1139/Seyed-Hossein-Mohajeri)

[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=E8PFUBEAAAAJ&hl=en)

[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://www.researchgate.net/profile/Seyed-Mohajeri-2)

[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](
https://ir.linkedin.com/in/hossein-mohajeri)


##### Mojtaba Mehraein
[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://khu.ac.ir/cv/279/Mojtaba-Mehraein)

[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=GwT49LIAAAAJ&hl=en)

[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://ir.linkedin.com/in/mojtaba-mehraein-002a03238)

[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](
https://ir.linkedin.com/in/mojtaba-mehraein-002a03238)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/farzadasgari/proadv",
    "name": "proadv",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "ProADV, python, signal processing, data processing, acoustic Doppler velocimeter, ADV, Denoising, Despiking",
    "author": "Farzad Asgari",
    "author_email": "std_farzad.asgari@alumni.khu.ac.ir",
    "download_url": "https://files.pythonhosted.org/packages/fc/22/2aedf21249229bcfb3b081e18a2f33ec218b457750721aeec098a98f704a/proadv-2.1.4.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n   <h1>ProADV - Process Acoustic Doppler Velocimeter</h1>\n</div>\n\n![readmeimage](https://raw.githubusercontent.com/farzadasgari/proadv/2919aa78fe5d02b540bc8386f7d1af10b5182d4e/examples/plots/readme.jpg)\n\n[![GitHub stars](https://img.shields.io/github/stars/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/stargazers)\n[![GitHub forks](https://img.shields.io/github/forks/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/network)\n[![GitHub issues](https://img.shields.io/github/issues/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/issues)\n[![GitHub license](https://img.shields.io/github/license/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/blob/main/LICENSE)\n[![PyPI version](https://img.shields.io/pypi/v/proadv.svg)](https://pypi.org/project/proadv/)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/proadv.svg)](https://pypi.org/project/proadv/)\n[![GitHub contributors](https://img.shields.io/github/contributors/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/graphs/contributors)\n[![GitHub pull requests](https://img.shields.io/github/issues-pr/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/pulls)\n[![GitHub closed pull requests](https://img.shields.io/github/issues-pr-closed/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/pulls?q=is%3Apr+is%3Aclosed)\n[![GitHub last commit](https://img.shields.io/github/last-commit/farzadasgari/proadv)](https://github.com/farzadasgari/proadv/commits/main)\n\n\n## Streamline Your ADV Data Analysis\n\n**ProADV** is a comprehensive Python package designed to empower researchers and engineers working with acoustic Doppler velocimeter (ADV) data. It offers a comprehensive suite of tools for efficient cleaning, analysis, and visualization of ADV data, streamlining your workflow and extracting valuable insights from your measurements.\n\n### Key Features\n\n* **Despiking and Denoising:** ProADV tackles the challenge of spikes and noise in ADV data, providing a variety of robust algorithms for effective data cleaning. \n    * **Spike Detection:** \n        * **ACC (Acceleration Thresholding):** Identifies spikes based on exceeding a user-defined acceleration threshold.\n        * **PST (Phase-Space Thresholding):** Utilizes a combination of velocity and its temporal derivative to detect spikes.\n        * **mPST (Modified Phase-Space Thresholding):** An enhanced version of PST with improved sensitivity.\n        * **VC (Velocity Correlation):** Detects spikes based on deviations from the correlation between neighboring data points.\n        * **KDE (Kernel Density Estimation):** Employs a statistical approach to identify outliers based on the probability density function. \n        * **3d-KDE (Three-dimensional Kernel Density Estimation):** Extends KDE to three dimensions for more robust spike detection in complex data.\n        * **m3d-KDE (Modified Three-dimensional Kernel Density Estimation):** Further refines 3d-KDE for enhanced performance.\n    * **Replacement Methods:** ProADV offers several options to replace detected spikes with more reliable values:\n        * **LVD (Last Valid Data):** Replaces spikes with the last valid data point before the spike.\n        *  **MV (Mean Value):** Replaces spikes with the mean value of velocity component. \n        * **LI (Linear Interpolation):** Uses linear interpolation between surrounding points to estimate the missing value.\n        * **12PP (12 Points Cubic Polynomial):** Employs a 12-point cubic polynomial to fit a smoother curve and replace spikes.\n\n\n<div align=\"center\">\n   <img src=\"https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/trivariate-kernel.png\" alt=\"trivariate-kernel\" style=\"width:300px;\"/>\n   <img src=\"https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/spectrum.png\" alt=\"trivariate-kernel\" style=\"width:300px;\"/>\n   <img src=\"https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/phase-space.png\" alt=\"trivariate-kernel\" style=\"width:300px;\"/>\n</div>\n\n\n* **Statistical Analysis:** ProADV equips you with essential statistical tools to characterize your ADV data:\n    * **Minimum, Maximum:** Provides the range of measured velocities.\n    * **Mean, Median, Mode:** Calculates central tendency measures.\n    * **Skewness, Kurtosis:** Analyzes the distribution characteristics of your data.\n\n* **Advanced Analysis:** In addition to cleaning and basic statistics, ProADV offers advanced functionalities for deeper insights:\n    * **Moving Average:** Smooths out data fluctuations for better visualization and trend analysis. Provided in simple moving average, exponential moving average, and weighted moving average methods. \n    * **SSA (Singular Spectrum Analysis):** Extracts underlying patterns and trends from time series data.\n    * **Kalman Filter:** Implements the Kalman filter algorithm for state estimation and prediction in time series data. \n    * **PR (Pollution Rate) Calculation:** Estimates the level of noise or pollution within the data.\n    * **Spectral Analysis:**\n        * **PSD (Power Spectral Density):** Analyzes the distribution of energy across different frequencies within the data.\n        * **PDF (Probability Density Function):** Provides the probability of encountering specific velocity values.\n    * **Normality Test:** Evaluates whether your data follows a normal distribution.\n    * **Normalization:** Scales data to a common range for further analysis or visualization.\n\n<div align=\"center\">\n   <img src=\"https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/singular-spectrum.png\" alt=\"singular-spectrum\" style=\"width:300px;\"/>\n   <img src=\"https://raw.githubusercontent.com/farzadasgari/proadv/main/examples/plots/kalman.png\" alt=\"kalman-filter\" style=\"width:300px;\"/>\n</div>\n\n### Installation\n\nThere are two convenient ways to install ProADV:\n\n1. **Using pip (recommended):**\n   ```bash\n   pip install proadv\n   ```\n\n2. **From source code:**\n\n   a. Clone the repository:\n      ```bash\n      git clone https://github.com/farzadasgari/proadv.git\n      ```\n   b. Navigate to the project directory:\n      ```bash\n      cd proadv\n      ```\n   c. Install using setup.py:\n      ```bash\n      python setup.py install\n      ```\n\n### Collaboration\n\nWe encourage collaboration and contributions from the community to improve ProADV. Here's how to contribute:\n\n1. Fork the repository on GitHub.\n2. Clone your forked repository to your local machine.\n3. Create a new branch for your changes.\n4. Make your changes and commit them with descriptive messages.\n5. Push your changes to your forked repository.\n6. Submit a pull request for review and merging.\n\n### References\n\nFor further information and in-depth understanding of the algorithms employed in ProADV, refer to the following resources:\n\n1. [Exploring the role of signal pollution rate on the performance of despiking velocity time-series algorithms](https://doi.org/10.1016/j.flowmeasinst.2023.102485)\n2. [Unleashing the power of three-dimensional kernel density estimation for Doppler Velocimeter data despiking](https://doi.org/10.1016/j.measurement.2023.114053)\n\n\n### Acknowledgment\n- This project was developed under the supervision of **[Dr. Seyed Hossein Mohaeri](https://khu.ac.ir/cv/1139/Seyed-Hossein-Mohajeri)** and **[Dr. Mojtaba Mehraein](https://khu.ac.ir/cv/279/Mojtaba-Mehraein)**.\n- We extend our deepest gratitude to **[Dr. Bimlesh Kumar](https://www.researchgate.net/profile/Bimlesh-Kumar)** and **[Dr. Luis Cea](https://www.researchgate.net/profile/Luis-Cea)** for their invaluable guidance and unwavering support throughout our journey.\n- Special thanks to [Narges Yaghoubi](https://github.com/nargesyaghoubi), [Hiva Yarandi](https://github.com/Hivayrn), [Mojtaba Karimi](https://github.com/mojikarimi), [Parvaneh Yaghoubi](https://github.com/parvanehyaghoubi), [Hossein Abazari](https://github.com/HossA12), and [Zahra Rezaei](https://github.com/ZahraRezaei672) for their valuable contributions to this project.\n\n\n### Contact\nFor any inquiries, please contact:\n- std_farzad.asgari@alumni.khu.ac.ir\n- khufarzadasgari@gmail.com\n\n\n### Links\n\n##### Farzad Asgari\n[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://farzadasgari.ir/)\n\n[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=Rhue_kkAAAAJ&hl=en)\n\n[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://www.researchgate.net/profile/Farzad-Asgari)\n\n[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/farzad-asgari-5a90942b2/)\n\n\n##### Seyed Hossein Mohajeri\n[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://khu.ac.ir/cv/1139/Seyed-Hossein-Mohajeri)\n\n[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=E8PFUBEAAAAJ&hl=en)\n\n[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://www.researchgate.net/profile/Seyed-Mohajeri-2)\n\n[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](\nhttps://ir.linkedin.com/in/hossein-mohajeri)\n\n\n##### Mojtaba Mehraein\n[![portfolio](https://img.shields.io/badge/my_portfolio-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://khu.ac.ir/cv/279/Mojtaba-Mehraein)\n\n[![Google Scholar Badge](https://img.shields.io/badge/Google%20Scholar-4285F4?logo=googlescholar&logoColor=fff&style=for-the-badge)](https://scholar.google.com/citations?user=GwT49LIAAAAJ&hl=en)\n\n[![ResearchGate Badge](https://img.shields.io/badge/ResearchGate-0CB?logo=researchgate&logoColor=fff&style=for-the-badge)](https://ir.linkedin.com/in/mojtaba-mehraein-002a03238)\n\n[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](\nhttps://ir.linkedin.com/in/mojtaba-mehraein-002a03238)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Process Acoustic Doppler Velocimeter data with advanced despiking and analysis tools",
    "version": "2.1.4",
    "project_urls": {
        "Documentation": "https://proadv.readthedocs.io/en/stable/",
        "Download URL": "https://pypi.org/project/proadv/",
        "Homepage": "https://github.com/farzadasgari/proadv",
        "Source Code": "https://github.com/farzadasgari/proadv"
    },
    "split_keywords": [
        "proadv",
        " python",
        " signal processing",
        " data processing",
        " acoustic doppler velocimeter",
        " adv",
        " denoising",
        " despiking"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ec1a3800a6a61b4c5c44688846d95b16582d71193bc911d4b2997c02dd8b5f27",
                "md5": "aba1e92dc2d85abdcc28d1d099fb959e",
                "sha256": "4344c2df1c3dbd76f36858ada5b0b189a0f5ff6a030d11d996c2711c625e6eda"
            },
            "downloads": -1,
            "filename": "proadv-2.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "aba1e92dc2d85abdcc28d1d099fb959e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 54821,
            "upload_time": "2024-08-02T22:22:23",
            "upload_time_iso_8601": "2024-08-02T22:22:23.391422Z",
            "url": "https://files.pythonhosted.org/packages/ec/1a/3800a6a61b4c5c44688846d95b16582d71193bc911d4b2997c02dd8b5f27/proadv-2.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fc222aedf21249229bcfb3b081e18a2f33ec218b457750721aeec098a98f704a",
                "md5": "66172d6732e24f2acce4aacd8428a6a4",
                "sha256": "c6cd12e3aa398050058b8fecad9be22144694438e946c5d334bd4975a168fae1"
            },
            "downloads": -1,
            "filename": "proadv-2.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "66172d6732e24f2acce4aacd8428a6a4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 46713,
            "upload_time": "2024-08-02T22:22:24",
            "upload_time_iso_8601": "2024-08-02T22:22:24.481904Z",
            "url": "https://files.pythonhosted.org/packages/fc/22/2aedf21249229bcfb3b081e18a2f33ec218b457750721aeec098a98f704a/proadv-2.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-02 22:22:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "farzadasgari",
    "github_project": "proadv",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "proadv"
}
        
Elapsed time: 0.33810s