# Probabilistic Quantum Reasoner
[](https://pypi.org/project/probabilistic-quantum-reasoner/)
[](https://pepy.tech/projects/probabilistic-quantum-reasoner)
[](https://krish567366.github.io/probabilistic-quantum-reasoner/)
[](https://krish567366.github.io/license-server/)
[](https://www.python.org/downloads/)
A **quantum-classical hybrid reasoning engine** for uncertainty-aware AI inference, fusing quantum probabilistic graphical models (QPGMs) with classical probabilistic logic.
## ๐ฏ Overview
The Probabilistic Quantum Reasoner implements a novel approach to AI reasoning by encoding knowledge using **quantum amplitude distributions** over Hilbert space, modeling uncertainty through entanglement and non-commutative conditional graphs, and enabling hybrid **Quantum Bayesian Networks** with causal, counterfactual, and abductive reasoning capabilities.
## ๐งฉ Key Features
- **Quantum Bayesian Networks**: Hybrid classical-quantum probabilistic graphical models
- **Quantum Belief Propagation**: Unitary message passing with amplitude-weighted inference
- **Causal Quantum Reasoning**: Do-calculus analog for quantum intervention logic
- **Multiple Backends**: Support for Qiskit, PennyLane, and classical simulation
- **Uncertainty Modeling**: Entanglement-based uncertainty representation
- **Counterfactual Reasoning**: Quantum counterfactuals using unitary interventions
## ๐ Quick Start
### Installation
```bash
pip install probabilistic-quantum-reasoner
```
For development with extra features:
```bash
pip install probabilistic-quantum-reasoner[dev,docs,extras]
```
### Basic Usage
```python
from probabilistic_quantum_reasoner import QuantumBayesianNetwork
from probabilistic_quantum_reasoner.backends import QiskitBackend
# Create a quantum Bayesian network
qbn = QuantumBayesianNetwork(backend=QiskitBackend())
# Add quantum and classical nodes
weather = qbn.add_quantum_node("weather", ["sunny", "rainy"])
mood = qbn.add_stochastic_node("mood", ["happy", "sad"])
# Create entangled relationship
qbn.add_edge(weather, mood)
qbn.entangle([weather, mood])
# Perform quantum inference
result = qbn.infer(evidence={"weather": "sunny"})
print(f"Mood probabilities: {result}")
# Quantum intervention (do-calculus)
intervention_result = qbn.intervene("weather", "rainy")
print(f"Mood under intervention: {intervention_result}")
```
## ๐งฌ Mathematical Foundation
The library implements quantum probabilistic reasoning using:
- **Tensor Product Spaces**: Joint state representation as |ฯโฉ = ฮฃแตขโฑผ ฮฑแตขโฑผ|iโฑผโฉ
- **Amplitude Manipulation**: Via Kraus operators and parameterized unitaries
- **Density Matrix Operations**: Mixed state inference through partial tracing
- **Non-commutative Conditional Probability**: P_Q(A|B) โ P_Q(B|A) in general
## ๐ Documentation
- **[API Reference](https://krish567366.github.io/probabilistic-quantum-reasoner/api-reference/)**
- **[Architecture Guide](https://krish567366.github.io/probabilistic-quantum-reasoner/architecture/)**
- **[Examples & Tutorials](https://krish567366.github.io/probabilistic-quantum-reasoner/examples/)**
## ๐งช Examples
### Quantum XOR Reasoning
```python
# Create entangled XOR gate reasoning
qbn = QuantumBayesianNetwork()
a = qbn.add_quantum_node("A", [0, 1])
b = qbn.add_quantum_node("B", [0, 1])
xor = qbn.add_quantum_node("XOR", [0, 1])
qbn.add_quantum_xor_relationship(a, b, xor)
result = qbn.infer(evidence={"A": 1, "B": 0})
```
### Weather-Mood Causal Graph
```python
# Hybrid classical-quantum causal modeling
from probabilistic_quantum_reasoner.examples import WeatherMoodExample
example = WeatherMoodExample()
causal_effect = example.estimate_causal_effect("weather", "mood")
counterfactual = example.counterfactual_query("What if it was sunny?")
```
## ๐ ๏ธ Architecture
```
probabilistic_quantum_reasoner/
โโโ core/ # Core network structures
โ โโโ network.py # QuantumBayesianNetwork
โ โโโ nodes.py # Quantum/Stochastic/Hybrid nodes
โ โโโ operators.py # Quantum operators and gates
โโโ inference/ # Reasoning engines
โ โโโ engine.py # Main inference engine
โ โโโ causal.py # Causal reasoning
โ โโโ belief_propagation.py
โ โโโ variational.py # Variational quantum inference
โโโ backends/ # Backend implementations
โ โโโ qiskit_backend.py
โ โโโ pennylane_backend.py
โ โโโ simulator.py
โโโ examples/ # Example implementations
```
## ๐ฌ Research Applications
- **AGI Inference Scaffolds**: Uncertainty-aware reasoning for autonomous systems
- **Quantum Explainable AI (Q-XAI)**: Interpretable quantum decision making
- **Counterfactual Analysis**: "What-if" scenarios in quantum superposition
- **Epistemic Uncertainty Modeling**: Non-classical uncertainty representation
## ๐ค Contributing
We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## ๐ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## ๐ Citation
If you use this library in your research, please cite:
```bibtex
@software{bajpai2025quantum,
title={Probabilistic Quantum Reasoner: A Hybrid Quantum-Classical Reasoning Engine},
author={Bajpai, Krishna},
year={2025},
url={https://github.com/krish567366/probabilistic-quantum-reasoner}
}
```
## ๐จโ๐ป Author
**Krishna Bajpai**
- Email: bajpaikrishna715@gmail.com
- GitHub: [@krish567366](https://github.com/krish567366)
## ๐ Acknowledgments
- Quantum computing community for foundational algorithms
- Classical probabilistic reasoning research
- Open source quantum computing frameworks (Qiskit, PennyLane)
Raw data
{
"_id": null,
"home_page": "https://github.com/quantum-ai/probabilistic-quantum-reasoner",
"name": "probabilistic-quantum-reasoner",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
"keywords": "quantum, bayesian, reasoning, AI, inference, probabilistic, causal, uncertainty, quantum-computing",
"author": "Quantum AI Research Team",
"author_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/55/1b/b118f040577897fb63951f1c32fc77089e361fad166d821e458384fb1389/probabilistic_quantum_reasoner-1.0.0.tar.gz",
"platform": null,
"description": "# Probabilistic Quantum Reasoner\r\n\r\n[](https://pypi.org/project/probabilistic-quantum-reasoner/)\r\n[](https://pepy.tech/projects/probabilistic-quantum-reasoner)\r\n[](https://krish567366.github.io/probabilistic-quantum-reasoner/)\r\n[](https://krish567366.github.io/license-server/)\r\n[](https://www.python.org/downloads/)\r\n\r\nA **quantum-classical hybrid reasoning engine** for uncertainty-aware AI inference, fusing quantum probabilistic graphical models (QPGMs) with classical probabilistic logic.\r\n\r\n## \ud83c\udfaf Overview\r\n\r\nThe Probabilistic Quantum Reasoner implements a novel approach to AI reasoning by encoding knowledge using **quantum amplitude distributions** over Hilbert space, modeling uncertainty through entanglement and non-commutative conditional graphs, and enabling hybrid **Quantum Bayesian Networks** with causal, counterfactual, and abductive reasoning capabilities.\r\n\r\n## \ud83e\udde9 Key Features\r\n\r\n- **Quantum Bayesian Networks**: Hybrid classical-quantum probabilistic graphical models\r\n- **Quantum Belief Propagation**: Unitary message passing with amplitude-weighted inference\r\n- **Causal Quantum Reasoning**: Do-calculus analog for quantum intervention logic\r\n- **Multiple Backends**: Support for Qiskit, PennyLane, and classical simulation\r\n- **Uncertainty Modeling**: Entanglement-based uncertainty representation\r\n- **Counterfactual Reasoning**: Quantum counterfactuals using unitary interventions\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\npip install probabilistic-quantum-reasoner\r\n```\r\n\r\nFor development with extra features:\r\n\r\n```bash\r\npip install probabilistic-quantum-reasoner[dev,docs,extras]\r\n```\r\n\r\n### Basic Usage\r\n\r\n```python\r\nfrom probabilistic_quantum_reasoner import QuantumBayesianNetwork\r\nfrom probabilistic_quantum_reasoner.backends import QiskitBackend\r\n\r\n# Create a quantum Bayesian network\r\nqbn = QuantumBayesianNetwork(backend=QiskitBackend())\r\n\r\n# Add quantum and classical nodes\r\nweather = qbn.add_quantum_node(\"weather\", [\"sunny\", \"rainy\"])\r\nmood = qbn.add_stochastic_node(\"mood\", [\"happy\", \"sad\"])\r\n\r\n# Create entangled relationship\r\nqbn.add_edge(weather, mood)\r\nqbn.entangle([weather, mood])\r\n\r\n# Perform quantum inference\r\nresult = qbn.infer(evidence={\"weather\": \"sunny\"})\r\nprint(f\"Mood probabilities: {result}\")\r\n\r\n# Quantum intervention (do-calculus)\r\nintervention_result = qbn.intervene(\"weather\", \"rainy\")\r\nprint(f\"Mood under intervention: {intervention_result}\")\r\n```\r\n\r\n## \ud83e\uddec Mathematical Foundation\r\n\r\nThe library implements quantum probabilistic reasoning using:\r\n\r\n- **Tensor Product Spaces**: Joint state representation as |\u03c8\u27e9 = \u03a3\u1d62\u2c7c \u03b1\u1d62\u2c7c|i\u2c7c\u27e9\r\n- **Amplitude Manipulation**: Via Kraus operators and parameterized unitaries\r\n- **Density Matrix Operations**: Mixed state inference through partial tracing\r\n- **Non-commutative Conditional Probability**: P_Q(A|B) \u2260 P_Q(B|A) in general\r\n\r\n## \ud83d\udcd6 Documentation\r\n\r\n- **[API Reference](https://krish567366.github.io/probabilistic-quantum-reasoner/api-reference/)**\r\n- **[Architecture Guide](https://krish567366.github.io/probabilistic-quantum-reasoner/architecture/)**\r\n- **[Examples & Tutorials](https://krish567366.github.io/probabilistic-quantum-reasoner/examples/)**\r\n\r\n## \ud83e\uddea Examples\r\n\r\n### Quantum XOR Reasoning\r\n```python\r\n# Create entangled XOR gate reasoning\r\nqbn = QuantumBayesianNetwork()\r\na = qbn.add_quantum_node(\"A\", [0, 1])\r\nb = qbn.add_quantum_node(\"B\", [0, 1])\r\nxor = qbn.add_quantum_node(\"XOR\", [0, 1])\r\n\r\nqbn.add_quantum_xor_relationship(a, b, xor)\r\nresult = qbn.infer(evidence={\"A\": 1, \"B\": 0})\r\n```\r\n\r\n### Weather-Mood Causal Graph\r\n```python\r\n# Hybrid classical-quantum causal modeling\r\nfrom probabilistic_quantum_reasoner.examples import WeatherMoodExample\r\n\r\nexample = WeatherMoodExample()\r\ncausal_effect = example.estimate_causal_effect(\"weather\", \"mood\")\r\ncounterfactual = example.counterfactual_query(\"What if it was sunny?\")\r\n```\r\n\r\n## \ud83d\udee0\ufe0f Architecture\r\n\r\n```\r\nprobabilistic_quantum_reasoner/\r\n\u251c\u2500\u2500 core/ # Core network structures\r\n\u2502 \u251c\u2500\u2500 network.py # QuantumBayesianNetwork\r\n\u2502 \u251c\u2500\u2500 nodes.py # Quantum/Stochastic/Hybrid nodes\r\n\u2502 \u2514\u2500\u2500 operators.py # Quantum operators and gates\r\n\u251c\u2500\u2500 inference/ # Reasoning engines\r\n\u2502 \u251c\u2500\u2500 engine.py # Main inference engine\r\n\u2502 \u251c\u2500\u2500 causal.py # Causal reasoning\r\n\u2502 \u251c\u2500\u2500 belief_propagation.py\r\n\u2502 \u2514\u2500\u2500 variational.py # Variational quantum inference\r\n\u251c\u2500\u2500 backends/ # Backend implementations\r\n\u2502 \u251c\u2500\u2500 qiskit_backend.py\r\n\u2502 \u251c\u2500\u2500 pennylane_backend.py\r\n\u2502 \u2514\u2500\u2500 simulator.py\r\n\u2514\u2500\u2500 examples/ # Example implementations\r\n```\r\n\r\n## \ud83d\udd2c Research Applications\r\n\r\n- **AGI Inference Scaffolds**: Uncertainty-aware reasoning for autonomous systems\r\n- **Quantum Explainable AI (Q-XAI)**: Interpretable quantum decision making\r\n- **Counterfactual Analysis**: \"What-if\" scenarios in quantum superposition\r\n- **Epistemic Uncertainty Modeling**: Non-classical uncertainty representation\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.\r\n\r\n1. Fork the repository\r\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\r\n3. Commit your changes (`git commit -m 'Add amazing feature'`)\r\n4. Push to the branch (`git push origin feature/amazing-feature`)\r\n5. Open a Pull Request\r\n\r\n## \ud83d\udcdd License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\udcda Citation\r\n\r\nIf you use this library in your research, please cite:\r\n\r\n```bibtex\r\n@software{bajpai2025quantum,\r\n title={Probabilistic Quantum Reasoner: A Hybrid Quantum-Classical Reasoning Engine},\r\n author={Bajpai, Krishna},\r\n year={2025},\r\n url={https://github.com/krish567366/probabilistic-quantum-reasoner}\r\n}\r\n```\r\n\r\n## \ud83d\udc68\u200d\ud83d\udcbb Author\r\n\r\n**Krishna Bajpai**\r\n- Email: bajpaikrishna715@gmail.com\r\n- GitHub: [@krish567366](https://github.com/krish567366)\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- Quantum computing community for foundational algorithms\r\n- Classical probabilistic reasoning research\r\n- Open source quantum computing frameworks (Qiskit, PennyLane)\r\n",
"bugtrack_url": null,
"license": "COmmercial",
"summary": "A quantum-classical hybrid reasoning engine for uncertainty-aware AI inference",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/krish567366/probabilistic-quantum-reasoner/issues",
"Documentation": "https://krish567366.github.io/probabilistic-quantum-reasoner/",
"Homepage": "https://github.com/krish567366/probabilistic-quantum-reasoner",
"Repository": "https://github.com/krish567366/probabilistic-quantum-reasoner"
},
"split_keywords": [
"quantum",
" bayesian",
" reasoning",
" ai",
" inference",
" probabilistic",
" causal",
" uncertainty",
" quantum-computing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "4b636977122a9a050739f65b444c8b6614016ec4b5e70a4787ab6f2cded28981",
"md5": "045a43f66cb0cd7c88fdbeb970c6b534",
"sha256": "765dff7c5ce38fd6481080cbba8363af41eba099b34b019fc79bc7c1fcd66f8d"
},
"downloads": -1,
"filename": "probabilistic_quantum_reasoner-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "045a43f66cb0cd7c88fdbeb970c6b534",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 71394,
"upload_time": "2025-07-16T04:22:20",
"upload_time_iso_8601": "2025-07-16T04:22:20.400091Z",
"url": "https://files.pythonhosted.org/packages/4b/63/6977122a9a050739f65b444c8b6614016ec4b5e70a4787ab6f2cded28981/probabilistic_quantum_reasoner-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "551bb118f040577897fb63951f1c32fc77089e361fad166d821e458384fb1389",
"md5": "06e9084d9b69615aac7ae946525d4c06",
"sha256": "95b73ad8f2030440a2c69e1bf00234b0b8f0ae657ca314d4e02021c13d24733f"
},
"downloads": -1,
"filename": "probabilistic_quantum_reasoner-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "06e9084d9b69615aac7ae946525d4c06",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 66009,
"upload_time": "2025-07-16T04:22:22",
"upload_time_iso_8601": "2025-07-16T04:22:22.127662Z",
"url": "https://files.pythonhosted.org/packages/55/1b/b118f040577897fb63951f1c32fc77089e361fad166d821e458384fb1389/probabilistic_quantum_reasoner-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 04:22:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "quantum-ai",
"github_project": "probabilistic-quantum-reasoner",
"github_not_found": true,
"lcname": "probabilistic-quantum-reasoner"
}