projectq


Nameprojectq JSON
Version 0.8.0 PyPI version JSON
download
home_page
SummaryProjectQ - An open source software framework for quantum computing
upload_time2022-10-18 16:03:17
maintainer
docs_urlNone
author
requires_python>=3.7
licenseApache License Version 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ProjectQ - An open source software framework for quantum computing
==================================================================

.. image:: https://img.shields.io/pypi/pyversions/projectq?label=Python
   :alt: PyPI - Python Version

.. image:: https://badge.fury.io/py/projectq.svg
   :target: https://badge.fury.io/py/projectq

.. image:: https://github.com/ProjectQ-Framework/ProjectQ/actions/workflows/ci.yml/badge.svg
   :alt: CI Status
   :target: https://github.com/ProjectQ-Framework/ProjectQ/actions/workflows/ci.yml

.. image:: https://coveralls.io/repos/github/ProjectQ-Framework/ProjectQ/badge.svg
   :alt: Coverage Status
   :target: https://coveralls.io/github/ProjectQ-Framework/ProjectQ

.. image:: https://readthedocs.org/projects/projectq/badge/?version=latest
   :target: http://projectq.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation Status


ProjectQ is an open source effort for quantum computing.

It features a compilation framework capable of
targeting various types of hardware, a high-performance quantum computer
simulator with emulation capabilities, and various compiler plug-ins.
This allows users to

-  run quantum programs on the IBM Quantum Experience chip, AQT devices, AWS Braket, Azure Quantum, or IonQ service provided devices
-  simulate quantum programs on classical computers
-  emulate quantum programs at a higher level of abstraction (e.g.,
   mimicking the action of large oracles instead of compiling them to
   low-level gates)
-  export quantum programs as circuits (using TikZ)
-  get resource estimates

Examples
--------

**First quantum program**

.. code-block:: python

    from projectq import MainEngine  # import the main compiler engine
    from projectq.ops import (
        H,
        Measure,
    )  # import the operations we want to perform (Hadamard and measurement)

    eng = MainEngine()  # create a default compiler (the back-end is a simulator)
    qubit = eng.allocate_qubit()  # allocate a quantum register with 1 qubit

    H | qubit  # apply a Hadamard gate
    Measure | qubit  # measure the qubit

    eng.flush()  # flush all gates (and execute measurements)
    print(f"Measured {int(qubit)}")  # converting a qubit to int or bool gives access to the measurement result


ProjectQ features a lean syntax which is close to the mathematical notation used in quantum physics. For example, a rotation of a qubit around the x-axis is usually specified as:

.. image:: docs/images/braket_notation.svg
    :alt: Rx(theta)|qubit>
    :width: 100px

The same statement in ProjectQ's syntax is:

.. code-block:: python

    Rx(theta) | qubit

The **|**-operator separates the specification of the gate operation (left-hand side) from the quantum bits to which the operation is applied (right-hand side).

**Changing the compiler and using a resource counter as a back-end**

Instead of simulating a quantum program, one can use our resource counter (as a back-end) to determine how many operations it would take on a future quantum computer with a given architecture. Suppose the qubits are arranged on a linear chain and the architecture supports any single-qubit gate as well as the two-qubit CNOT and Swap operations:

.. code-block:: python

    from projectq import MainEngine
    from projectq.backends import ResourceCounter
    from projectq.ops import QFT
    from projectq.setups import linear

    compiler_engines = linear.get_engine_list(num_qubits=16, one_qubit_gates='any', two_qubit_gates=(CNOT, Swap))
    resource_counter = ResourceCounter()
    eng = MainEngine(backend=resource_counter, engine_list=compiler_engines)
    qureg = eng.allocate_qureg(16)
    QFT | qureg
    eng.flush()

    print(resource_counter)

    # This will output, among other information,
    # how many operations are needed to perform
    # this quantum fourier transform (QFT), i.e.,
    #   Gate class counts:
    #       AllocateQubitGate : 16
    #       CXGate : 240
    #       HGate : 16
    #       R : 120
    #       Rz : 240
    #       SwapGate : 262


**Running a quantum program on IBM's QE chips**

To run a program on the IBM Quantum Experience chips, all one has to do is choose the `IBMBackend` and the corresponding setup:

.. code-block:: python

    import projectq.setups.ibm
    from projectq.backends import IBMBackend

    token = 'MY_TOKEN'
    device = 'ibmq_16_melbourne'
    compiler_engines = projectq.setups.ibm.get_engine_list(token=token, device=device)
    eng = MainEngine(
        IBMBackend(token=token, use_hardware=True, num_runs=1024, verbose=False, device=device),
        engine_list=compiler_engines,
    )


**Running a quantum program on AQT devices**

To run a program on the AQT trapped ion quantum computer, choose the `AQTBackend` and the corresponding setup:

.. code-block:: python

    import projectq.setups.aqt
    from projectq.backends import AQTBackend

    token = 'MY_TOKEN'
    device = 'aqt_device'
    compiler_engines = projectq.setups.aqt.get_engine_list(token=token, device=device)
    eng = MainEngine(
        AQTBackend(token=token, use_hardware=True, num_runs=1024, verbose=False, device=device),
        engine_list=compiler_engines,
    )


**Running a quantum program on a AWS Braket provided device**

To run a program on some of the devices provided by the AWS Braket service,
choose the `AWSBraketBackend`. The currend devices supported are Aspen-8 from Rigetti,
IonQ from IonQ and the state vector simulator SV1:

.. code-block:: python

    from projectq.backends import AWSBraketBackend

    creds = {
        'AWS_ACCESS_KEY_ID': 'your_aws_access_key_id',
        'AWS_SECRET_KEY': 'your_aws_secret_key',
    }

    s3_folder = ['S3Bucket', 'S3Directory']
    device = 'IonQ'
    eng = MainEngine(
        AWSBraketBackend(
            use_hardware=True,
            credentials=creds,
            s3_folder=s3_folder,
            num_runs=1024,
            verbose=False,
            device=device,
        ),
        engine_list=[],
    )


.. note::

   In order to use the AWSBraketBackend, you need to install ProjectQ with the 'braket' extra requirement:

   .. code-block:: bash

       python3 -m pip install projectq[braket]

   or

   .. code-block:: bash

       cd /path/to/projectq/source/code
       python3 -m pip install -ve .[braket]


**Running a quantum program on a Azure Quantum provided device**

To run a program on devices provided by the `Azure Quantum <https://azure.microsoft.com/en-us/services/quantum/>`_.

Use `AzureQuantumBackend` to run ProjectQ circuits on hardware devices and simulator devices from providers `IonQ` and `Quantinuum`.

.. code-block:: python

    from projectq.backends import AzureQuantumBackend

    azure_quantum_backend = AzureQuantumBackend(
        use_hardware=False, target_name='ionq.simulator', resource_id='<resource-id>', location='<location>', verbose=True
    )

.. note::

   In order to use the AzureQuantumBackend, you need to install ProjectQ with the 'azure-quantum' extra requirement:

   .. code-block:: bash

       python3 -m pip install projectq[azure-quantum]

   or

   .. code-block:: bash

       cd /path/to/projectq/source/code
       python3 -m pip install -ve .[azure-quantum]

**Running a quantum program on IonQ devices**

To run a program on the IonQ trapped ion hardware, use the `IonQBackend` and its corresponding setup.

Currently available devices are:

* `ionq_simulator`: A 29-qubit simulator.
* `ionq_qpu`: A 11-qubit trapped ion system.

.. code-block:: python

    import projectq.setups.ionq
    from projectq import MainEngine
    from projectq.backends import IonQBackend

    token = 'MY_TOKEN'
    device = 'ionq_qpu'
    backend = IonQBackend(
        token=token,
        use_hardware=True,
        num_runs=1024,
        verbose=False,
        device=device,
    )
    compiler_engines = projectq.setups.ionq.get_engine_list(
        token=token,
        device=device,
    )
    eng = MainEngine(backend, engine_list=compiler_engines)


**Classically simulate a quantum program**

ProjectQ has a high-performance simulator which allows simulating up to about 30 qubits on a regular laptop. See the `simulator tutorial <https://github.com/ProjectQ-Framework/ProjectQ/blob/feature/update-readme/examples/simulator_tutorial.ipynb>`__ for more information. Using the emulation features of our simulator (fast classical shortcuts), one can easily emulate Shor's algorithm for problem sizes for which a quantum computer would require above 50 qubits, see our `example codes <http://projectq.readthedocs.io/en/latest/examples.html#shor-s-algorithm-for-factoring>`__.


The advanced features of the simulator are also particularly useful to investigate algorithms for the simulation of quantum systems. For example, the simulator can evolve a quantum system in time (without Trotter errors) and it gives direct access to expectation values of Hamiltonians leading to extremely fast simulations of VQE type algorithms:

.. code-block:: python

    from projectq import MainEngine
    from projectq.ops import All, Measure, QubitOperator, TimeEvolution

    eng = MainEngine()
    wavefunction = eng.allocate_qureg(2)
    # Specify a Hamiltonian in terms of Pauli operators:
    hamiltonian = QubitOperator("X0 X1") + 0.5 * QubitOperator("Y0 Y1")
    # Apply exp(-i * Hamiltonian * time) (without Trotter error)
    TimeEvolution(time=1, hamiltonian=hamiltonian) | wavefunction
    # Measure the expection value using the simulator shortcut:
    eng.flush()
    value = eng.backend.get_expectation_value(hamiltonian, wavefunction)

    # Last operation in any program should be measuring all qubits
    All(Measure) | qureg
    eng.flush()



Getting started
---------------

To start using ProjectQ, simply follow the installation instructions in the `tutorials <http://projectq.readthedocs.io/en/latest/tutorials.html>`__. There, you will also find OS-specific hints, a small introduction to the ProjectQ syntax, and a few `code examples <http://projectq.readthedocs.io/en/latest/examples.html>`__. More example codes and tutorials can be found in the examples folder `here <https://github.com/ProjectQ-Framework/ProjectQ/tree/develop/examples>`__ on GitHub.

Also, make sure to check out the `ProjectQ
website <http://www.projectq.ch>`__ and the detailed `code documentation <http://projectq.readthedocs.io/en/latest/>`__.

How to contribute
-----------------

For information on how to contribute, please visit the `ProjectQ
website <http://www.projectq.ch>`__ or send an e-mail to
info@projectq.ch.

Please cite
-----------

When using ProjectQ for research projects, please cite

-  Damian S. Steiger, Thomas Haener, and Matthias Troyer "ProjectQ: An
   Open Source Software Framework for Quantum Computing"
   `Quantum 2, 49 (2018) <https://doi.org/10.22331/q-2018-01-31-49>`__
   (published on `arXiv <https://arxiv.org/abs/1612.08091>`__ on 23 Dec 2016)
-  Thomas Haener, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer
   "A Software Methodology for Compiling Quantum Programs" `Quantum Sci. Technol. 3 (2018) 020501 <https://doi.org/10.1088/2058-9565/aaa5cc>`__
   (published on `arXiv <http://arxiv.org/abs/1604.01401>`__ on 5 Apr 2016)

Authors
-------

The first release of ProjectQ (v0.1) was developed by `Thomas
Haener <http://www.comp.phys.ethz.ch/people/person-detail.html?persid=179208>`__
and `Damian S.
Steiger <http://www.comp.phys.ethz.ch/people/person-detail.html?persid=165677>`__
in the group of `Prof. Dr. Matthias
Troyer <http://www.comp.phys.ethz.ch/people/troyer.html>`__ at ETH
Zurich.

ProjectQ is constantly growing and `many other people <https://github.com/ProjectQ-Framework/ProjectQ/graphs/contributors>`__ have already contributed to it in the meantime.

License
-------

ProjectQ is released under the Apache 2 license.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "projectq",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "",
    "author_email": "ProjectQ <info@projectq.ch>",
    "download_url": "https://files.pythonhosted.org/packages/30/88/48c8347cadf6afb7f329e7c06d30880159e2a50b6e8a643c7667c26ffaf0/projectq-0.8.0.tar.gz",
    "platform": null,
    "description": "ProjectQ - An open source software framework for quantum computing\n==================================================================\n\n.. image:: https://img.shields.io/pypi/pyversions/projectq?label=Python\n   :alt: PyPI - Python Version\n\n.. image:: https://badge.fury.io/py/projectq.svg\n   :target: https://badge.fury.io/py/projectq\n\n.. image:: https://github.com/ProjectQ-Framework/ProjectQ/actions/workflows/ci.yml/badge.svg\n   :alt: CI Status\n   :target: https://github.com/ProjectQ-Framework/ProjectQ/actions/workflows/ci.yml\n\n.. image:: https://coveralls.io/repos/github/ProjectQ-Framework/ProjectQ/badge.svg\n   :alt: Coverage Status\n   :target: https://coveralls.io/github/ProjectQ-Framework/ProjectQ\n\n.. image:: https://readthedocs.org/projects/projectq/badge/?version=latest\n   :target: http://projectq.readthedocs.io/en/latest/?badge=latest\n   :alt: Documentation Status\n\n\nProjectQ is an open source effort for quantum computing.\n\nIt features a compilation framework capable of\ntargeting various types of hardware, a high-performance quantum computer\nsimulator with emulation capabilities, and various compiler plug-ins.\nThis allows users to\n\n-  run quantum programs on the IBM Quantum Experience chip, AQT devices, AWS Braket, Azure Quantum, or IonQ service provided devices\n-  simulate quantum programs on classical computers\n-  emulate quantum programs at a higher level of abstraction (e.g.,\n   mimicking the action of large oracles instead of compiling them to\n   low-level gates)\n-  export quantum programs as circuits (using TikZ)\n-  get resource estimates\n\nExamples\n--------\n\n**First quantum program**\n\n.. code-block:: python\n\n    from projectq import MainEngine  # import the main compiler engine\n    from projectq.ops import (\n        H,\n        Measure,\n    )  # import the operations we want to perform (Hadamard and measurement)\n\n    eng = MainEngine()  # create a default compiler (the back-end is a simulator)\n    qubit = eng.allocate_qubit()  # allocate a quantum register with 1 qubit\n\n    H | qubit  # apply a Hadamard gate\n    Measure | qubit  # measure the qubit\n\n    eng.flush()  # flush all gates (and execute measurements)\n    print(f\"Measured {int(qubit)}\")  # converting a qubit to int or bool gives access to the measurement result\n\n\nProjectQ features a lean syntax which is close to the mathematical notation used in quantum physics. For example, a rotation of a qubit around the x-axis is usually specified as:\n\n.. image:: docs/images/braket_notation.svg\n    :alt: Rx(theta)|qubit>\n    :width: 100px\n\nThe same statement in ProjectQ's syntax is:\n\n.. code-block:: python\n\n    Rx(theta) | qubit\n\nThe **|**-operator separates the specification of the gate operation (left-hand side) from the quantum bits to which the operation is applied (right-hand side).\n\n**Changing the compiler and using a resource counter as a back-end**\n\nInstead of simulating a quantum program, one can use our resource counter (as a back-end) to determine how many operations it would take on a future quantum computer with a given architecture. Suppose the qubits are arranged on a linear chain and the architecture supports any single-qubit gate as well as the two-qubit CNOT and Swap operations:\n\n.. code-block:: python\n\n    from projectq import MainEngine\n    from projectq.backends import ResourceCounter\n    from projectq.ops import QFT\n    from projectq.setups import linear\n\n    compiler_engines = linear.get_engine_list(num_qubits=16, one_qubit_gates='any', two_qubit_gates=(CNOT, Swap))\n    resource_counter = ResourceCounter()\n    eng = MainEngine(backend=resource_counter, engine_list=compiler_engines)\n    qureg = eng.allocate_qureg(16)\n    QFT | qureg\n    eng.flush()\n\n    print(resource_counter)\n\n    # This will output, among other information,\n    # how many operations are needed to perform\n    # this quantum fourier transform (QFT), i.e.,\n    #   Gate class counts:\n    #       AllocateQubitGate : 16\n    #       CXGate : 240\n    #       HGate : 16\n    #       R : 120\n    #       Rz : 240\n    #       SwapGate : 262\n\n\n**Running a quantum program on IBM's QE chips**\n\nTo run a program on the IBM Quantum Experience chips, all one has to do is choose the `IBMBackend` and the corresponding setup:\n\n.. code-block:: python\n\n    import projectq.setups.ibm\n    from projectq.backends import IBMBackend\n\n    token = 'MY_TOKEN'\n    device = 'ibmq_16_melbourne'\n    compiler_engines = projectq.setups.ibm.get_engine_list(token=token, device=device)\n    eng = MainEngine(\n        IBMBackend(token=token, use_hardware=True, num_runs=1024, verbose=False, device=device),\n        engine_list=compiler_engines,\n    )\n\n\n**Running a quantum program on AQT devices**\n\nTo run a program on the AQT trapped ion quantum computer, choose the `AQTBackend` and the corresponding setup:\n\n.. code-block:: python\n\n    import projectq.setups.aqt\n    from projectq.backends import AQTBackend\n\n    token = 'MY_TOKEN'\n    device = 'aqt_device'\n    compiler_engines = projectq.setups.aqt.get_engine_list(token=token, device=device)\n    eng = MainEngine(\n        AQTBackend(token=token, use_hardware=True, num_runs=1024, verbose=False, device=device),\n        engine_list=compiler_engines,\n    )\n\n\n**Running a quantum program on a AWS Braket provided device**\n\nTo run a program on some of the devices provided by the AWS Braket service,\nchoose the `AWSBraketBackend`. The currend devices supported are Aspen-8 from Rigetti,\nIonQ from IonQ and the state vector simulator SV1:\n\n.. code-block:: python\n\n    from projectq.backends import AWSBraketBackend\n\n    creds = {\n        'AWS_ACCESS_KEY_ID': 'your_aws_access_key_id',\n        'AWS_SECRET_KEY': 'your_aws_secret_key',\n    }\n\n    s3_folder = ['S3Bucket', 'S3Directory']\n    device = 'IonQ'\n    eng = MainEngine(\n        AWSBraketBackend(\n            use_hardware=True,\n            credentials=creds,\n            s3_folder=s3_folder,\n            num_runs=1024,\n            verbose=False,\n            device=device,\n        ),\n        engine_list=[],\n    )\n\n\n.. note::\n\n   In order to use the AWSBraketBackend, you need to install ProjectQ with the 'braket' extra requirement:\n\n   .. code-block:: bash\n\n       python3 -m pip install projectq[braket]\n\n   or\n\n   .. code-block:: bash\n\n       cd /path/to/projectq/source/code\n       python3 -m pip install -ve .[braket]\n\n\n**Running a quantum program on a Azure Quantum provided device**\n\nTo run a program on devices provided by the `Azure Quantum <https://azure.microsoft.com/en-us/services/quantum/>`_.\n\nUse `AzureQuantumBackend` to run ProjectQ circuits on hardware devices and simulator devices from providers `IonQ` and `Quantinuum`.\n\n.. code-block:: python\n\n    from projectq.backends import AzureQuantumBackend\n\n    azure_quantum_backend = AzureQuantumBackend(\n        use_hardware=False, target_name='ionq.simulator', resource_id='<resource-id>', location='<location>', verbose=True\n    )\n\n.. note::\n\n   In order to use the AzureQuantumBackend, you need to install ProjectQ with the 'azure-quantum' extra requirement:\n\n   .. code-block:: bash\n\n       python3 -m pip install projectq[azure-quantum]\n\n   or\n\n   .. code-block:: bash\n\n       cd /path/to/projectq/source/code\n       python3 -m pip install -ve .[azure-quantum]\n\n**Running a quantum program on IonQ devices**\n\nTo run a program on the IonQ trapped ion hardware, use the `IonQBackend` and its corresponding setup.\n\nCurrently available devices are:\n\n* `ionq_simulator`: A 29-qubit simulator.\n* `ionq_qpu`: A 11-qubit trapped ion system.\n\n.. code-block:: python\n\n    import projectq.setups.ionq\n    from projectq import MainEngine\n    from projectq.backends import IonQBackend\n\n    token = 'MY_TOKEN'\n    device = 'ionq_qpu'\n    backend = IonQBackend(\n        token=token,\n        use_hardware=True,\n        num_runs=1024,\n        verbose=False,\n        device=device,\n    )\n    compiler_engines = projectq.setups.ionq.get_engine_list(\n        token=token,\n        device=device,\n    )\n    eng = MainEngine(backend, engine_list=compiler_engines)\n\n\n**Classically simulate a quantum program**\n\nProjectQ has a high-performance simulator which allows simulating up to about 30 qubits on a regular laptop. See the `simulator tutorial <https://github.com/ProjectQ-Framework/ProjectQ/blob/feature/update-readme/examples/simulator_tutorial.ipynb>`__ for more information. Using the emulation features of our simulator (fast classical shortcuts), one can easily emulate Shor's algorithm for problem sizes for which a quantum computer would require above 50 qubits, see our `example codes <http://projectq.readthedocs.io/en/latest/examples.html#shor-s-algorithm-for-factoring>`__.\n\n\nThe advanced features of the simulator are also particularly useful to investigate algorithms for the simulation of quantum systems. For example, the simulator can evolve a quantum system in time (without Trotter errors) and it gives direct access to expectation values of Hamiltonians leading to extremely fast simulations of VQE type algorithms:\n\n.. code-block:: python\n\n    from projectq import MainEngine\n    from projectq.ops import All, Measure, QubitOperator, TimeEvolution\n\n    eng = MainEngine()\n    wavefunction = eng.allocate_qureg(2)\n    # Specify a Hamiltonian in terms of Pauli operators:\n    hamiltonian = QubitOperator(\"X0 X1\") + 0.5 * QubitOperator(\"Y0 Y1\")\n    # Apply exp(-i * Hamiltonian * time) (without Trotter error)\n    TimeEvolution(time=1, hamiltonian=hamiltonian) | wavefunction\n    # Measure the expection value using the simulator shortcut:\n    eng.flush()\n    value = eng.backend.get_expectation_value(hamiltonian, wavefunction)\n\n    # Last operation in any program should be measuring all qubits\n    All(Measure) | qureg\n    eng.flush()\n\n\n\nGetting started\n---------------\n\nTo start using ProjectQ, simply follow the installation instructions in the `tutorials <http://projectq.readthedocs.io/en/latest/tutorials.html>`__. There, you will also find OS-specific hints, a small introduction to the ProjectQ syntax, and a few `code examples <http://projectq.readthedocs.io/en/latest/examples.html>`__. More example codes and tutorials can be found in the examples folder `here <https://github.com/ProjectQ-Framework/ProjectQ/tree/develop/examples>`__ on GitHub.\n\nAlso, make sure to check out the `ProjectQ\nwebsite <http://www.projectq.ch>`__ and the detailed `code documentation <http://projectq.readthedocs.io/en/latest/>`__.\n\nHow to contribute\n-----------------\n\nFor information on how to contribute, please visit the `ProjectQ\nwebsite <http://www.projectq.ch>`__ or send an e-mail to\ninfo@projectq.ch.\n\nPlease cite\n-----------\n\nWhen using ProjectQ for research projects, please cite\n\n-  Damian S. Steiger, Thomas Haener, and Matthias Troyer \"ProjectQ: An\n   Open Source Software Framework for Quantum Computing\"\n   `Quantum 2, 49 (2018) <https://doi.org/10.22331/q-2018-01-31-49>`__\n   (published on `arXiv <https://arxiv.org/abs/1612.08091>`__ on 23 Dec 2016)\n-  Thomas Haener, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer\n   \"A Software Methodology for Compiling Quantum Programs\" `Quantum Sci. Technol. 3 (2018) 020501 <https://doi.org/10.1088/2058-9565/aaa5cc>`__\n   (published on `arXiv <http://arxiv.org/abs/1604.01401>`__ on 5 Apr 2016)\n\nAuthors\n-------\n\nThe first release of ProjectQ (v0.1) was developed by `Thomas\nHaener <http://www.comp.phys.ethz.ch/people/person-detail.html?persid=179208>`__\nand `Damian S.\nSteiger <http://www.comp.phys.ethz.ch/people/person-detail.html?persid=165677>`__\nin the group of `Prof. Dr. Matthias\nTroyer <http://www.comp.phys.ethz.ch/people/troyer.html>`__ at ETH\nZurich.\n\nProjectQ is constantly growing and `many other people <https://github.com/ProjectQ-Framework/ProjectQ/graphs/contributors>`__ have already contributed to it in the meantime.\n\nLicense\n-------\n\nProjectQ is released under the Apache 2 license.\n",
    "bugtrack_url": null,
    "license": "Apache License Version 2.0",
    "summary": "ProjectQ - An open source software framework for quantum computing",
    "version": "0.8.0",
    "project_urls": {
        "Documentation": "https://projectq.readthedocs.io/en/latest/",
        "Homepage": "http://www.projectq.ch",
        "Issue Tracker": "https://github.com/ProjectQ-Framework/ProjectQ/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "308848c8347cadf6afb7f329e7c06d30880159e2a50b6e8a643c7667c26ffaf0",
                "md5": "dd24bc539cef8e0be02c455166c32b41",
                "sha256": "0bcd242afabe947ac4737dffab1de62628b84125ee6ccb3ec23bd4f1d082ec60"
            },
            "downloads": -1,
            "filename": "projectq-0.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "dd24bc539cef8e0be02c455166c32b41",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 433667,
            "upload_time": "2022-10-18T16:03:17",
            "upload_time_iso_8601": "2022-10-18T16:03:17.779185Z",
            "url": "https://files.pythonhosted.org/packages/30/88/48c8347cadf6afb7f329e7c06d30880159e2a50b6e8a643c7667c26ffaf0/projectq-0.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-10-18 16:03:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ProjectQ-Framework",
    "github_project": "ProjectQ",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "projectq"
}
        
Elapsed time: 0.28962s