prompt2map


Nameprompt2map JSON
Version 0.1.3 PyPI version JSON
download
home_pageNone
SummaryDynamic maps generation based on natural language prompts using Retrieval-Augmented Generation (RAG)
upload_time2024-09-28 23:41:11
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT License
keywords maps mapping cartography gis webgis geospatial llm nlp prompt
VCS
bugtrack_url
requirements bidict click folium geopandas jsonlines matplotlib pandas plotly psycopg Shapely SQLAlchemy sqlglot sqlparse openai mapclassify duckdb typing-extensions pyarrow
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # prompt2map

**prompt2map** is a Python package that generates dynamic maps based on natural language prompts, utilizing Retrieval-Augmented Generation (RAG).

# Quickstart

## Initialize the mapper with geospatial data

To get started, initialize Prompt2Map by providing a geospatial data file, embeddings, and descriptions of the fields in your dataset:

```python
from prompt2map import Prompt2Map

# Example with portuguese 2021 Census
p2m = Prompt2Map.from_file(
    "censo2021portugal", 
    "data/censo_pt_2021/geodata.parquet",  # Main geospatial data source that will be queries and mapped 
    "data/censo_pt_2021/embeddings.parquet",  # Embedding for string literals
    "data/censo_pt_2021/variable_descriptions.csv" # Description of fields in geodata.parquet 
)
```

## Make a query

Once initialized, you can generate maps by making natural language queries. For example, to create a population density map:

```python
prompt = "Population density map of the district of Setúbal by parish in inhabitants / km2"
generated_map = p2m.to_map(prompt)
```

![Screenshot of a web choropleth map of Setúbal district with parish polygons](docs/images/example_map_censo_pt.png)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "prompt2map",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Jos\u00e9 Miguel Cordero Carvacho <josemcorderoc@gmail.com>",
    "keywords": "maps, mapping, cartography, gis, webgis, geospatial, llm, nlp, prompt",
    "author": null,
    "author_email": "Jos\u00e9 Miguel Cordero Carvacho <josemcorderoc@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/f1/cc/ffe80948ccdd6cc4ea6be13fed629c3f8cc9612b0a04b2794bdb119bcb65/prompt2map-0.1.3.tar.gz",
    "platform": null,
    "description": "# prompt2map\n\n**prompt2map** is a Python package that generates dynamic maps based on natural language prompts, utilizing Retrieval-Augmented Generation (RAG).\n\n# Quickstart\n\n## Initialize the mapper with geospatial data\n\nTo get started, initialize Prompt2Map by providing a geospatial data file, embeddings, and descriptions of the fields in your dataset:\n\n```python\nfrom prompt2map import Prompt2Map\n\n# Example with portuguese 2021 Census\np2m = Prompt2Map.from_file(\n    \"censo2021portugal\", \n    \"data/censo_pt_2021/geodata.parquet\",  # Main geospatial data source that will be queries and mapped \n    \"data/censo_pt_2021/embeddings.parquet\",  # Embedding for string literals\n    \"data/censo_pt_2021/variable_descriptions.csv\" # Description of fields in geodata.parquet \n)\n```\n\n## Make a query\n\nOnce initialized, you can generate maps by making natural language queries. For example, to create a population density map:\n\n```python\nprompt = \"Population density map of the district of Set\u00fabal by parish in inhabitants / km2\"\ngenerated_map = p2m.to_map(prompt)\n```\n\n![Screenshot of a web choropleth map of Set\u00fabal district with parish polygons](docs/images/example_map_censo_pt.png)\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Dynamic maps generation based on natural language prompts using Retrieval-Augmented Generation (RAG)",
    "version": "0.1.3",
    "project_urls": {
        "Repository": "https://github.com/josemcorderoc/prompt2map"
    },
    "split_keywords": [
        "maps",
        " mapping",
        " cartography",
        " gis",
        " webgis",
        " geospatial",
        " llm",
        " nlp",
        " prompt"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f011dd2574348fff77c37ad93c301686ab9450d8a980009f127a88e17b3af2d3",
                "md5": "e842fd83a75c00ee7ecd5d1ea051495d",
                "sha256": "f9f7fb6e13ddf15a62791168cba145e81c7cbb2e6d54827ee2a7642261972531"
            },
            "downloads": -1,
            "filename": "prompt2map-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e842fd83a75c00ee7ecd5d1ea051495d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1223924,
            "upload_time": "2024-09-28T23:41:09",
            "upload_time_iso_8601": "2024-09-28T23:41:09.083285Z",
            "url": "https://files.pythonhosted.org/packages/f0/11/dd2574348fff77c37ad93c301686ab9450d8a980009f127a88e17b3af2d3/prompt2map-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f1ccffe80948ccdd6cc4ea6be13fed629c3f8cc9612b0a04b2794bdb119bcb65",
                "md5": "93826f932d287fb9801ca6d83237b3ff",
                "sha256": "ca57843f026fcb74216eecc93bf8b71e17cf72091584a49444fccf8f920f64bd"
            },
            "downloads": -1,
            "filename": "prompt2map-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "93826f932d287fb9801ca6d83237b3ff",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2585117,
            "upload_time": "2024-09-28T23:41:11",
            "upload_time_iso_8601": "2024-09-28T23:41:11.659135Z",
            "url": "https://files.pythonhosted.org/packages/f1/cc/ffe80948ccdd6cc4ea6be13fed629c3f8cc9612b0a04b2794bdb119bcb65/prompt2map-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-28 23:41:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "josemcorderoc",
    "github_project": "prompt2map",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "bidict",
            "specs": [
                [
                    "~=",
                    "0.23"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    "~=",
                    "8.1"
                ]
            ]
        },
        {
            "name": "folium",
            "specs": [
                [
                    "~=",
                    "0.17"
                ]
            ]
        },
        {
            "name": "geopandas",
            "specs": [
                [
                    "~=",
                    "1.0"
                ]
            ]
        },
        {
            "name": "jsonlines",
            "specs": [
                [
                    "~=",
                    "4.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "~=",
                    "3.9"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "~=",
                    "2.2"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    "~=",
                    "5.23"
                ]
            ]
        },
        {
            "name": "psycopg",
            "specs": [
                [
                    "~=",
                    "3.2"
                ]
            ]
        },
        {
            "name": "Shapely",
            "specs": [
                [
                    "~=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "SQLAlchemy",
            "specs": [
                [
                    "~=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "sqlglot",
            "specs": [
                [
                    "~=",
                    "25.8"
                ]
            ]
        },
        {
            "name": "sqlparse",
            "specs": [
                [
                    "~=",
                    "0.5"
                ]
            ]
        },
        {
            "name": "openai",
            "specs": [
                [
                    "~=",
                    "1.38"
                ]
            ]
        },
        {
            "name": "mapclassify",
            "specs": [
                [
                    "~=",
                    "2.8"
                ]
            ]
        },
        {
            "name": "duckdb",
            "specs": [
                [
                    "~=",
                    "1.1"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "~=",
                    "4.12"
                ]
            ]
        },
        {
            "name": "pyarrow",
            "specs": [
                [
                    "~=",
                    "17.0"
                ]
            ]
        }
    ],
    "lcname": "prompt2map"
}
        
Elapsed time: 1.01666s