promptflow-evals


Namepromptflow-evals JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://microsoft.github.io/promptflow/
SummaryPrompt flow evals
upload_time2024-08-13 21:00:01
maintainerNone
docs_urlNone
authorMicrosoft Corporation
requires_python<4.0,>=3.8
licenseMIT
keywords telemetry
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Prompt flow evaluators

[![Python package](https://img.shields.io/pypi/v/promptflow-evals)](https://pypi.org/project/promptflow-evals/)
[![License: MIT](https://img.shields.io/github/license/microsoft/promptflow)](https://github.com/microsoft/promptflow/blob/main/LICENSE)

## Introduction
Evaluators are custom or prebuilt promptflow flows that are designed to measure the quality of the outputs from language models.

## Usage
Users can create evaluator runs on the local machine as shown in the example below:

```python
import os
from pprint import pprint

from promptflow.core import AzureOpenAIModelConfiguration
from promptflow.evals.evaluate import evaluate
from promptflow.evals.evaluators import RelevanceEvaluator
from promptflow.evals.evaluators.content_safety import ViolenceEvaluator


def answer_length(answer, **kwargs):
    return {"value": len(answer)}


if __name__ == "__main__":
    # Built-in evaluators
    # Initialize Azure OpenAI Connection
    model_config = AzureOpenAIModelConfiguration(
        azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
        api_key=os.environ.get("AZURE_OPENAI_KEY"),
        azure_deployment=os.environ.get("AZURE_OPENAI_DEPLOYMENT"),
    )

    # Initialzing Relevance Evaluator
    relevance_eval = RelevanceEvaluator(model_config)

    # Running Relevance Evaluator on single input row
    relevance_score = relevance_eval(
        answer="The Alpine Explorer Tent is the most waterproof.",
        context="From the our product list,"
        " the alpine explorer tent is the most waterproof."
        " The Adventure Dining Table has higher weight.",
        question="Which tent is the most waterproof?",
    )

    pprint(relevance_score)
    # {'gpt_relevance': 5.0}

    # Content Safety Evaluator

    # Initialize Project Scope
    project_scope = {
        "subscription_id": "e0fd569c-e34a-4249-8c24-e8d723c7f054",
        "resource_group_name": "rg-test",
        "project_name": "project-test",
    }

    violence_eval = ViolenceEvaluator(project_scope)
    violence_score = violence_eval(question="What is the capital of France?", answer="Paris.")
    pprint(violence_score)
    # {'violence': 'Very low',
    # 'violence_reason': "The system's response is a straightforward factual answer "
    #                    'to a geography question. There is no violent content or '
    #                    'language present.',
    # 'violence_score': 0}

    # Code based evaluator
    answer_length("The Alpine Explorer Tent is the most waterproof.")
    # {'value': 48}

    # Using multiple evaluators together using `Evaluate` API

    result = evaluate(
        data="evaluate_test_data.jsonl",
        evaluators={
            "answer_length": answer_length,
            "violence": violence_eval,
        },
    )

    pprint(result)
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://microsoft.github.io/promptflow/",
    "name": "promptflow-evals",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "telemetry",
    "author": "Microsoft Corporation",
    "author_email": "azuremlsdk@microsoft.com",
    "download_url": null,
    "platform": null,
    "description": "# Prompt flow evaluators\n\n[![Python package](https://img.shields.io/pypi/v/promptflow-evals)](https://pypi.org/project/promptflow-evals/)\n[![License: MIT](https://img.shields.io/github/license/microsoft/promptflow)](https://github.com/microsoft/promptflow/blob/main/LICENSE)\n\n## Introduction\nEvaluators are custom or prebuilt promptflow flows that are designed to measure the quality of the outputs from language models.\n\n## Usage\nUsers can create evaluator runs on the local machine as shown in the example below:\n\n```python\nimport os\nfrom pprint import pprint\n\nfrom promptflow.core import AzureOpenAIModelConfiguration\nfrom promptflow.evals.evaluate import evaluate\nfrom promptflow.evals.evaluators import RelevanceEvaluator\nfrom promptflow.evals.evaluators.content_safety import ViolenceEvaluator\n\n\ndef answer_length(answer, **kwargs):\n    return {\"value\": len(answer)}\n\n\nif __name__ == \"__main__\":\n    # Built-in evaluators\n    # Initialize Azure OpenAI Connection\n    model_config = AzureOpenAIModelConfiguration(\n        azure_endpoint=os.environ.get(\"AZURE_OPENAI_ENDPOINT\"),\n        api_key=os.environ.get(\"AZURE_OPENAI_KEY\"),\n        azure_deployment=os.environ.get(\"AZURE_OPENAI_DEPLOYMENT\"),\n    )\n\n    # Initialzing Relevance Evaluator\n    relevance_eval = RelevanceEvaluator(model_config)\n\n    # Running Relevance Evaluator on single input row\n    relevance_score = relevance_eval(\n        answer=\"The Alpine Explorer Tent is the most waterproof.\",\n        context=\"From the our product list,\"\n        \" the alpine explorer tent is the most waterproof.\"\n        \" The Adventure Dining Table has higher weight.\",\n        question=\"Which tent is the most waterproof?\",\n    )\n\n    pprint(relevance_score)\n    # {'gpt_relevance': 5.0}\n\n    # Content Safety Evaluator\n\n    # Initialize Project Scope\n    project_scope = {\n        \"subscription_id\": \"e0fd569c-e34a-4249-8c24-e8d723c7f054\",\n        \"resource_group_name\": \"rg-test\",\n        \"project_name\": \"project-test\",\n    }\n\n    violence_eval = ViolenceEvaluator(project_scope)\n    violence_score = violence_eval(question=\"What is the capital of France?\", answer=\"Paris.\")\n    pprint(violence_score)\n    # {'violence': 'Very low',\n    # 'violence_reason': \"The system's response is a straightforward factual answer \"\n    #                    'to a geography question. There is no violent content or '\n    #                    'language present.',\n    # 'violence_score': 0}\n\n    # Code based evaluator\n    answer_length(\"The Alpine Explorer Tent is the most waterproof.\")\n    # {'value': 48}\n\n    # Using multiple evaluators together using `Evaluate` API\n\n    result = evaluate(\n        data=\"evaluate_test_data.jsonl\",\n        evaluators={\n            \"answer_length\": answer_length,\n            \"violence\": violence_eval,\n        },\n    )\n\n    pprint(result)\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Prompt flow evals",
    "version": "0.3.2",
    "project_urls": {
        "Bug Reports": "https://github.com/microsoft/promptflow/issues",
        "Homepage": "https://microsoft.github.io/promptflow/",
        "Repository": "https://github.com/microsoft/promptflow"
    },
    "split_keywords": [
        "telemetry"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bf52635b858c199b7be1ba7649b342168a0440be7d7e9496403ebf150c1fe11d",
                "md5": "6c6ee3d26b4ef0458d4429326013b970",
                "sha256": "4a07f85db9b3564b654e5c380360c699fbc470acd2e15046c1b2f78df1730cb6"
            },
            "downloads": -1,
            "filename": "promptflow_evals-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6c6ee3d26b4ef0458d4429326013b970",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 113065,
            "upload_time": "2024-08-13T21:00:01",
            "upload_time_iso_8601": "2024-08-13T21:00:01.175157Z",
            "url": "https://files.pythonhosted.org/packages/bf/52/635b858c199b7be1ba7649b342168a0440be7d7e9496403ebf150c1fe11d/promptflow_evals-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-13 21:00:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "microsoft",
    "github_project": "promptflow",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "promptflow-evals"
}
        
Elapsed time: 7.96236s