promptzl


Namepromptzl JSON
Version 0.9.1 PyPI version JSON
download
home_pageNone
SummaryPromptzl - LLMs as Classifiers
upload_time2024-12-01 00:58:37
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords llm nlp transformers classifiers predictive modeling machine learning torch huggingface
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--- BADGES: START --->
[![GitHub - License](https://img.shields.io/badge/License-MIT-yellow.svg)][#github-license]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=github&style=flat&color=pink&label=docs&message=promptzl)][#docs-package]
![Tests Passing](https://github.com/lazerlambda/promptzl/actions/workflows/python-package.yml/badge.svg)

[#github-license]: https://github.com/LazerLambda/Promptzl/blob/main/LICENSE.md
[#docs-package]: https://promptzl.readthedocs.io/en/latest/
<!--- BADGES: END --->



# <p style="text-align: center;">Pr🥨mptzl (Under Development)</p>

Promptzl is a simple library for turning LLMs into traditional PyTorch-based classifiers using the 🤗 Transformers library.

Classify large datasets quickly and easily while maintaining full control!

## Installation

Download this repository, navigate to the folder and run:
`pip install .`

### Getting Started

In just a few lines of code, you can transform a LLM of choice into an old-school classifier with all it's desirable properties:
```{python}
    from promptzl import *
    from datasets import load_dataset

    dataset = load_dataset("SetFit/ag_news")

    verbalizer = Vbz({0: ["World"], 1: ["Sports"], 2: ["Business"], 3: ["Tech"]})
    prompt = Txt("[Category:") + verbalizer + Txt("] ") + Key()

    model = MaskedLM4Classification("roberta-large", prompt)
    output = model.classify(dataset['test'], show_progress_bar=True).predictions
    sum([int(prd == lbl) for prd, lbl in zip(output, dataset['test']['label'])]) / len(output)
```

## Installation (Dev)

`pip install -e .`

`pip install -r test-requirements.txt`

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "promptzl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "llm, nlp, transformers, classifiers, predictive modeling, machine learning, torch, huggingface",
    "author": null,
    "author_email": "Philipp Koch <PhillKoch@protonmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/c6/b8/107ef1277920ba6affeee9ee483de5cd8ba6ee3f8964c29fe8812b4040d5/promptzl-0.9.1.tar.gz",
    "platform": null,
    "description": "<!--- BADGES: START --->\n[![GitHub - License](https://img.shields.io/badge/License-MIT-yellow.svg)][#github-license]\n[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=github&style=flat&color=pink&label=docs&message=promptzl)][#docs-package]\n![Tests Passing](https://github.com/lazerlambda/promptzl/actions/workflows/python-package.yml/badge.svg)\n\n[#github-license]: https://github.com/LazerLambda/Promptzl/blob/main/LICENSE.md\n[#docs-package]: https://promptzl.readthedocs.io/en/latest/\n<!--- BADGES: END --->\n\n\n\n# <p style=\"text-align: center;\">Pr\ud83e\udd68mptzl (Under Development)</p>\n\nPromptzl is a simple library for turning LLMs into traditional PyTorch-based classifiers using the \ud83e\udd17 Transformers library.\n\nClassify large datasets quickly and easily while maintaining full control!\n\n## Installation\n\nDownload this repository, navigate to the folder and run:\n`pip install .`\n\n### Getting Started\n\nIn just a few lines of code, you can transform a LLM of choice into an old-school classifier with all it's desirable properties:\n```{python}\n    from promptzl import *\n    from datasets import load_dataset\n\n    dataset = load_dataset(\"SetFit/ag_news\")\n\n    verbalizer = Vbz({0: [\"World\"], 1: [\"Sports\"], 2: [\"Business\"], 3: [\"Tech\"]})\n    prompt = Txt(\"[Category:\") + verbalizer + Txt(\"] \") + Key()\n\n    model = MaskedLM4Classification(\"roberta-large\", prompt)\n    output = model.classify(dataset['test'], show_progress_bar=True).predictions\n    sum([int(prd == lbl) for prd, lbl in zip(output, dataset['test']['label'])]) / len(output)\n```\n\n## Installation (Dev)\n\n`pip install -e .`\n\n`pip install -r test-requirements.txt`\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Promptzl - LLMs as Classifiers",
    "version": "0.9.1",
    "project_urls": {
        "Issues": "https://github.com/LazerLambda/Promptzl/issues",
        "Repository": "https://github.com/LazerLambda/Promptzl",
        "homepage": "https://promptzl.readthedocs.io/en/latest/"
    },
    "split_keywords": [
        "llm",
        " nlp",
        " transformers",
        " classifiers",
        " predictive modeling",
        " machine learning",
        " torch",
        " huggingface"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2988aa41fc0cd8b65266d8049f99f02277034fa981eaa8091ff6a6d2b8fbec8a",
                "md5": "3ce7bf53ef949d61ce97ce96ad1bc40d",
                "sha256": "34a925c5015c6ca8e32aa3ad8183af10319c3dba7858a04485cfb0be0c82301c"
            },
            "downloads": -1,
            "filename": "promptzl-0.9.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3ce7bf53ef949d61ce97ce96ad1bc40d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 17500,
            "upload_time": "2024-12-01T00:58:33",
            "upload_time_iso_8601": "2024-12-01T00:58:33.132859Z",
            "url": "https://files.pythonhosted.org/packages/29/88/aa41fc0cd8b65266d8049f99f02277034fa981eaa8091ff6a6d2b8fbec8a/promptzl-0.9.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c6b8107ef1277920ba6affeee9ee483de5cd8ba6ee3f8964c29fe8812b4040d5",
                "md5": "d7a0a02694918bdbe48b9af22cc72704",
                "sha256": "75ac727807e833a1e1acc4abd322efc13db72e477e1374f248237aa4dc4387dc"
            },
            "downloads": -1,
            "filename": "promptzl-0.9.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d7a0a02694918bdbe48b9af22cc72704",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 21621,
            "upload_time": "2024-12-01T00:58:37",
            "upload_time_iso_8601": "2024-12-01T00:58:37.221762Z",
            "url": "https://files.pythonhosted.org/packages/c6/b8/107ef1277920ba6affeee9ee483de5cd8ba6ee3f8964c29fe8812b4040d5/promptzl-0.9.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-01 00:58:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LazerLambda",
    "github_project": "Promptzl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "promptzl"
}
        
Elapsed time: 9.80021s