# Proofly
Enterprise-grade health metrics analysis and prediction engine for healthcare applications. Proofly empowers healthcare applications with advanced analytics and predictive capabilities, focusing on chronic conditions including diabetes, hypertension, COPD, and more.
## Table of Contents
- [Features](#features)
- [Installation](#installation)
- [Dependencies](#dependencies)
- [Quick Start](#quick-start)
- [Usage Guide](#usage-guide)
- [Supported Health Conditions](#supported-health-conditions)
- [Exporting Results](#exporting-results)
- [Error Handling](#error-handling)
- [License](#license)
- [Support](#support)
- [Acknowledgments](#acknowledgments)
## Features
- Comprehensive health scoring with evidence-based algorithms
- Multi-factor risk stratification
- Time-series health data processing
- Smart clinical recommendations
- HIPAA-compliant data handling
- Extensive error handling and validation
- Export capabilities for reports and analysis
## Installation
```bash
pip install proofly
```
## Dependencies
- Python ≥ 3.8
- dataclasses
- typing
- datetime
## Quick Start
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
# Initialize analyzer
analyzer = HealthAnalyzer()
# Create metrics
metrics = DiabetesMetrics(
blood_glucose=120, # mg/dL
hba1c=6.5, # %
blood_pressure=130 # mmHg
)
# Analyze metrics
result = analyzer.analyze_metrics("diabetes", metrics)
# Access results
print(f"Health Score: {result.health_score}")
print(f"Risk Level: {result.risk_level}")
print(f"Confidence: {result.confidence_score}%")
print("\nRecommendations:")
for rec in result.recommendations:
print(f"- {rec}")
```
## Usage Guide
### Supported Health Conditions
#### Diabetes Management
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
analyzer = HealthAnalyzer()
diabetes_metrics = DiabetesMetrics(
blood_glucose=120,
hba1c=6.5,
blood_pressure=130
)
result = analyzer.analyze_metrics(
condition="diabetes",
metrics=diabetes_metrics
)
analysis = result.get_detailed_analysis()
print(f"Health Score: {analysis['health_score']}")
print(f"Risk Level: {analysis['risk_level']}")
```
#### Hypertension Monitoring
```python
from proofly import HealthAnalyzer
from proofly.models import HypertensionMetrics
analyzer = HealthAnalyzer()
hypertension_metrics = HypertensionMetrics(
systolic_pressure=130,
diastolic_pressure=85,
heart_rate=72
)
result = analyzer.analyze_metrics("hypertension", hypertension_metrics)
print(f"Health Score: {result.health_score}")
```
#### COPD Assessment
```python
from proofly.models import COPDMetrics
copd_metrics = COPDMetrics(
oxygen_saturation=95,
peak_flow=350,
respiratory_rate=18
)
result = analyzer.analyze_metrics("copd", copd_metrics)
print(f"Health Score: {result.health_score}")
```
### Exporting Results
```python
# Export Example
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
from proofly.export import ReportGenerator
from proofly.enums import ReportFormat
analyzer = HealthAnalyzer()
metrics = DiabetesMetrics(blood_glucose=120, hba1c=6.5, blood_pressure=130)
result = analyzer.analyze_metrics("diabetes", metrics)
report = ReportGenerator.create_report(
result,
format=ReportFormat.PDF,
include_graphs=True,
include_recommendations=True
)
print(report['data'])
```
### Error Handling
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
from proofly.exceptions import ValidationError, ConfigurationError, AnalysisError
analyzer = HealthAnalyzer()
try:
result = analyzer.analyze_metrics(
condition="diabetes",
metrics=DiabetesMetrics(
blood_glucose=500,
hba1c=6.5,
blood_pressure=130
)
)
except ValidationError as e:
print(f"Validation Error: {e.message}")
```
## License
Distributed under the MIT License. See `LICENSE` for more information.
## Support
* Issue Tracker: [GitHub Issues](https://github.com/moroii69/proofly/issues)
* Email Support: support@proofly.xyz
## Acknowledgments
* Built with input from healthcare professionals
* Implements evidence-based medical guidelines
* Uses validated statistical models
* Follows healthcare industry best practices
* Adheres to HIPAA compliance standards
Raw data
{
"_id": null,
"home_page": null,
"name": "proofly",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "health, analytics, medical, prediction",
"author": "Mohammed Ufraan",
"author_email": "Mohammed Ufraan <kurosen930@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/d1/37/6d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640/proofly-1.2.4.tar.gz",
"platform": null,
"description": "# Proofly\r\n\r\nEnterprise-grade health metrics analysis and prediction engine for healthcare applications. Proofly empowers healthcare applications with advanced analytics and predictive capabilities, focusing on chronic conditions including diabetes, hypertension, COPD, and more.\r\n\r\n## Table of Contents\r\n- [Features](#features)\r\n- [Installation](#installation)\r\n- [Dependencies](#dependencies)\r\n- [Quick Start](#quick-start)\r\n- [Usage Guide](#usage-guide)\r\n - [Supported Health Conditions](#supported-health-conditions)\r\n - [Exporting Results](#exporting-results)\r\n - [Error Handling](#error-handling)\r\n- [License](#license)\r\n- [Support](#support)\r\n- [Acknowledgments](#acknowledgments)\r\n\r\n## Features\r\n- Comprehensive health scoring with evidence-based algorithms\r\n- Multi-factor risk stratification\r\n- Time-series health data processing\r\n- Smart clinical recommendations\r\n- HIPAA-compliant data handling\r\n- Extensive error handling and validation\r\n- Export capabilities for reports and analysis\r\n\r\n## Installation\r\n```bash\r\npip install proofly\r\n```\r\n\r\n## Dependencies\r\n- Python \u2265 3.8\r\n- dataclasses\r\n- typing\r\n- datetime\r\n\r\n## Quick Start\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\n\r\n# Initialize analyzer\r\nanalyzer = HealthAnalyzer()\r\n\r\n# Create metrics\r\nmetrics = DiabetesMetrics(\r\n blood_glucose=120, # mg/dL\r\n hba1c=6.5, # %\r\n blood_pressure=130 # mmHg\r\n)\r\n\r\n# Analyze metrics\r\nresult = analyzer.analyze_metrics(\"diabetes\", metrics)\r\n\r\n# Access results\r\nprint(f\"Health Score: {result.health_score}\")\r\nprint(f\"Risk Level: {result.risk_level}\")\r\nprint(f\"Confidence: {result.confidence_score}%\")\r\nprint(\"\\nRecommendations:\")\r\nfor rec in result.recommendations:\r\n print(f\"- {rec}\")\r\n```\r\n\r\n## Usage Guide\r\n\r\n### Supported Health Conditions\r\n\r\n#### Diabetes Management\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\n\r\nanalyzer = HealthAnalyzer()\r\n\r\ndiabetes_metrics = DiabetesMetrics(\r\n blood_glucose=120,\r\n hba1c=6.5,\r\n blood_pressure=130\r\n)\r\n\r\nresult = analyzer.analyze_metrics(\r\n condition=\"diabetes\",\r\n metrics=diabetes_metrics\r\n)\r\n\r\nanalysis = result.get_detailed_analysis()\r\nprint(f\"Health Score: {analysis['health_score']}\")\r\nprint(f\"Risk Level: {analysis['risk_level']}\")\r\n```\r\n\r\n#### Hypertension Monitoring\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import HypertensionMetrics\r\n\r\nanalyzer = HealthAnalyzer()\r\nhypertension_metrics = HypertensionMetrics(\r\n systolic_pressure=130,\r\n diastolic_pressure=85,\r\n heart_rate=72\r\n)\r\nresult = analyzer.analyze_metrics(\"hypertension\", hypertension_metrics)\r\nprint(f\"Health Score: {result.health_score}\")\r\n```\r\n\r\n#### COPD Assessment\r\n```python\r\nfrom proofly.models import COPDMetrics\r\n\r\ncopd_metrics = COPDMetrics(\r\n oxygen_saturation=95,\r\n peak_flow=350,\r\n respiratory_rate=18\r\n)\r\nresult = analyzer.analyze_metrics(\"copd\", copd_metrics)\r\nprint(f\"Health Score: {result.health_score}\")\r\n\r\n```\r\n\r\n### Exporting Results\r\n```python\r\n# Export Example\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\nfrom proofly.export import ReportGenerator\r\nfrom proofly.enums import ReportFormat\r\n\r\nanalyzer = HealthAnalyzer()\r\nmetrics = DiabetesMetrics(blood_glucose=120, hba1c=6.5, blood_pressure=130)\r\nresult = analyzer.analyze_metrics(\"diabetes\", metrics)\r\n\r\nreport = ReportGenerator.create_report(\r\n result,\r\n format=ReportFormat.PDF,\r\n include_graphs=True,\r\n include_recommendations=True\r\n)\r\nprint(report['data'])\r\n```\r\n\r\n### Error Handling\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\nfrom proofly.exceptions import ValidationError, ConfigurationError, AnalysisError\r\n\r\nanalyzer = HealthAnalyzer()\r\ntry:\r\n result = analyzer.analyze_metrics(\r\n condition=\"diabetes\",\r\n metrics=DiabetesMetrics(\r\n blood_glucose=500,\r\n hba1c=6.5,\r\n blood_pressure=130\r\n )\r\n )\r\nexcept ValidationError as e:\r\n print(f\"Validation Error: {e.message}\")\r\n```\r\n\r\n## License\r\nDistributed under the MIT License. See `LICENSE` for more information.\r\n\r\n## Support\r\n* Issue Tracker: [GitHub Issues](https://github.com/moroii69/proofly/issues)\r\n* Email Support: support@proofly.xyz\r\n\r\n## Acknowledgments\r\n* Built with input from healthcare professionals\r\n* Implements evidence-based medical guidelines\r\n* Uses validated statistical models\r\n* Follows healthcare industry best practices\r\n* Adheres to HIPAA compliance standards\r\n",
"bugtrack_url": null,
"license": "Proofly - A health tracking and management application designed to generate professional invoices, bills, and receipts while managing user health data securely. Copyright (C) 2024 Mohammed Ufraan This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. For support or inquiries, you can contact me via email at: ufraaan@example.com For physical mail, you can send correspondence to: Mohammed Ufraan [kurosen930@gmail.com] ",
"summary": "Enterprise-grade health metrics analysis and prediction engine",
"version": "1.2.4",
"project_urls": {
"Homepage": "https://github.com/moroii69/proofly"
},
"split_keywords": [
"health",
" analytics",
" medical",
" prediction"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "434b0bf1734b1291a0e5e646bf9c7489dabcf2dea9f541719e4acb76b087707e",
"md5": "3901971ecb38a56e19e17b000d8c500d",
"sha256": "6e7beff9a36bb6772d1cf6f94e70a219be1701fe9f42011187202856b985ac25"
},
"downloads": -1,
"filename": "proofly-1.2.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3901971ecb38a56e19e17b000d8c500d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 8446,
"upload_time": "2024-12-30T16:55:31",
"upload_time_iso_8601": "2024-12-30T16:55:31.332232Z",
"url": "https://files.pythonhosted.org/packages/43/4b/0bf1734b1291a0e5e646bf9c7489dabcf2dea9f541719e4acb76b087707e/proofly-1.2.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d1376d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640",
"md5": "f7ff2eaa5f65bc76a174f83b9dc9ee37",
"sha256": "b7d21edc987464e285e3748df93eb09be0e308b11b82492d1d7e73282a9db753"
},
"downloads": -1,
"filename": "proofly-1.2.4.tar.gz",
"has_sig": false,
"md5_digest": "f7ff2eaa5f65bc76a174f83b9dc9ee37",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 6999,
"upload_time": "2024-12-30T16:55:33",
"upload_time_iso_8601": "2024-12-30T16:55:33.628497Z",
"url": "https://files.pythonhosted.org/packages/d1/37/6d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640/proofly-1.2.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-30 16:55:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "moroii69",
"github_project": "proofly",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "proofly"
}