proofly


Nameproofly JSON
Version 1.2.4 PyPI version JSON
download
home_pageNone
SummaryEnterprise-grade health metrics analysis and prediction engine
upload_time2024-12-30 16:55:33
maintainerNone
docs_urlNone
authorMohammed Ufraan
requires_python>=3.8
licenseProofly - A health tracking and management application designed to generate professional invoices, bills, and receipts while managing user health data securely. Copyright (C) 2024 Mohammed Ufraan This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. For support or inquiries, you can contact me via email at: ufraaan@example.com For physical mail, you can send correspondence to: Mohammed Ufraan [kurosen930@gmail.com]
keywords health analytics medical prediction
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Proofly

Enterprise-grade health metrics analysis and prediction engine for healthcare applications. Proofly empowers healthcare applications with advanced analytics and predictive capabilities, focusing on chronic conditions including diabetes, hypertension, COPD, and more.

## Table of Contents
- [Features](#features)
- [Installation](#installation)
- [Dependencies](#dependencies)
- [Quick Start](#quick-start)
- [Usage Guide](#usage-guide)
  - [Supported Health Conditions](#supported-health-conditions)
  - [Exporting Results](#exporting-results)
  - [Error Handling](#error-handling)
- [License](#license)
- [Support](#support)
- [Acknowledgments](#acknowledgments)

## Features
- Comprehensive health scoring with evidence-based algorithms
- Multi-factor risk stratification
- Time-series health data processing
- Smart clinical recommendations
- HIPAA-compliant data handling
- Extensive error handling and validation
- Export capabilities for reports and analysis

## Installation
```bash
pip install proofly
```

## Dependencies
- Python ≥ 3.8
- dataclasses
- typing
- datetime

## Quick Start
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics

# Initialize analyzer
analyzer = HealthAnalyzer()

# Create metrics
metrics = DiabetesMetrics(
    blood_glucose=120,  # mg/dL
    hba1c=6.5,         # %
    blood_pressure=130  # mmHg
)

# Analyze metrics
result = analyzer.analyze_metrics("diabetes", metrics)

# Access results
print(f"Health Score: {result.health_score}")
print(f"Risk Level: {result.risk_level}")
print(f"Confidence: {result.confidence_score}%")
print("\nRecommendations:")
for rec in result.recommendations:
    print(f"- {rec}")
```

## Usage Guide

### Supported Health Conditions

#### Diabetes Management
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics

analyzer = HealthAnalyzer()

diabetes_metrics = DiabetesMetrics(
    blood_glucose=120,
    hba1c=6.5,
    blood_pressure=130
)

result = analyzer.analyze_metrics(
    condition="diabetes",
    metrics=diabetes_metrics
)

analysis = result.get_detailed_analysis()
print(f"Health Score: {analysis['health_score']}")
print(f"Risk Level: {analysis['risk_level']}")
```

#### Hypertension Monitoring
```python
from proofly import HealthAnalyzer
from proofly.models import HypertensionMetrics

analyzer = HealthAnalyzer()
hypertension_metrics = HypertensionMetrics(
    systolic_pressure=130,
    diastolic_pressure=85,
    heart_rate=72
)
result = analyzer.analyze_metrics("hypertension", hypertension_metrics)
print(f"Health Score: {result.health_score}")
```

#### COPD Assessment
```python
from proofly.models import COPDMetrics

copd_metrics = COPDMetrics(
    oxygen_saturation=95,
    peak_flow=350,
    respiratory_rate=18
)
result = analyzer.analyze_metrics("copd", copd_metrics)
print(f"Health Score: {result.health_score}")

```

### Exporting Results
```python
# Export Example
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
from proofly.export import ReportGenerator
from proofly.enums import ReportFormat

analyzer = HealthAnalyzer()
metrics = DiabetesMetrics(blood_glucose=120, hba1c=6.5, blood_pressure=130)
result = analyzer.analyze_metrics("diabetes", metrics)

report = ReportGenerator.create_report(
    result,
    format=ReportFormat.PDF,
    include_graphs=True,
    include_recommendations=True
)
print(report['data'])
```

### Error Handling
```python
from proofly import HealthAnalyzer
from proofly.models import DiabetesMetrics
from proofly.exceptions import ValidationError, ConfigurationError, AnalysisError

analyzer = HealthAnalyzer()
try:
    result = analyzer.analyze_metrics(
        condition="diabetes",
        metrics=DiabetesMetrics(
            blood_glucose=500,
            hba1c=6.5,
            blood_pressure=130
        )
    )
except ValidationError as e:
    print(f"Validation Error: {e.message}")
```

## License
Distributed under the MIT License. See `LICENSE` for more information.

## Support
* Issue Tracker: [GitHub Issues](https://github.com/moroii69/proofly/issues)
* Email Support: support@proofly.xyz

## Acknowledgments
* Built with input from healthcare professionals
* Implements evidence-based medical guidelines
* Uses validated statistical models
* Follows healthcare industry best practices
* Adheres to HIPAA compliance standards

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "proofly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "health, analytics, medical, prediction",
    "author": "Mohammed Ufraan",
    "author_email": "Mohammed Ufraan <kurosen930@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d1/37/6d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640/proofly-1.2.4.tar.gz",
    "platform": null,
    "description": "# Proofly\r\n\r\nEnterprise-grade health metrics analysis and prediction engine for healthcare applications. Proofly empowers healthcare applications with advanced analytics and predictive capabilities, focusing on chronic conditions including diabetes, hypertension, COPD, and more.\r\n\r\n## Table of Contents\r\n- [Features](#features)\r\n- [Installation](#installation)\r\n- [Dependencies](#dependencies)\r\n- [Quick Start](#quick-start)\r\n- [Usage Guide](#usage-guide)\r\n  - [Supported Health Conditions](#supported-health-conditions)\r\n  - [Exporting Results](#exporting-results)\r\n  - [Error Handling](#error-handling)\r\n- [License](#license)\r\n- [Support](#support)\r\n- [Acknowledgments](#acknowledgments)\r\n\r\n## Features\r\n- Comprehensive health scoring with evidence-based algorithms\r\n- Multi-factor risk stratification\r\n- Time-series health data processing\r\n- Smart clinical recommendations\r\n- HIPAA-compliant data handling\r\n- Extensive error handling and validation\r\n- Export capabilities for reports and analysis\r\n\r\n## Installation\r\n```bash\r\npip install proofly\r\n```\r\n\r\n## Dependencies\r\n- Python \u2265 3.8\r\n- dataclasses\r\n- typing\r\n- datetime\r\n\r\n## Quick Start\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\n\r\n# Initialize analyzer\r\nanalyzer = HealthAnalyzer()\r\n\r\n# Create metrics\r\nmetrics = DiabetesMetrics(\r\n    blood_glucose=120,  # mg/dL\r\n    hba1c=6.5,         # %\r\n    blood_pressure=130  # mmHg\r\n)\r\n\r\n# Analyze metrics\r\nresult = analyzer.analyze_metrics(\"diabetes\", metrics)\r\n\r\n# Access results\r\nprint(f\"Health Score: {result.health_score}\")\r\nprint(f\"Risk Level: {result.risk_level}\")\r\nprint(f\"Confidence: {result.confidence_score}%\")\r\nprint(\"\\nRecommendations:\")\r\nfor rec in result.recommendations:\r\n    print(f\"- {rec}\")\r\n```\r\n\r\n## Usage Guide\r\n\r\n### Supported Health Conditions\r\n\r\n#### Diabetes Management\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\n\r\nanalyzer = HealthAnalyzer()\r\n\r\ndiabetes_metrics = DiabetesMetrics(\r\n    blood_glucose=120,\r\n    hba1c=6.5,\r\n    blood_pressure=130\r\n)\r\n\r\nresult = analyzer.analyze_metrics(\r\n    condition=\"diabetes\",\r\n    metrics=diabetes_metrics\r\n)\r\n\r\nanalysis = result.get_detailed_analysis()\r\nprint(f\"Health Score: {analysis['health_score']}\")\r\nprint(f\"Risk Level: {analysis['risk_level']}\")\r\n```\r\n\r\n#### Hypertension Monitoring\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import HypertensionMetrics\r\n\r\nanalyzer = HealthAnalyzer()\r\nhypertension_metrics = HypertensionMetrics(\r\n    systolic_pressure=130,\r\n    diastolic_pressure=85,\r\n    heart_rate=72\r\n)\r\nresult = analyzer.analyze_metrics(\"hypertension\", hypertension_metrics)\r\nprint(f\"Health Score: {result.health_score}\")\r\n```\r\n\r\n#### COPD Assessment\r\n```python\r\nfrom proofly.models import COPDMetrics\r\n\r\ncopd_metrics = COPDMetrics(\r\n    oxygen_saturation=95,\r\n    peak_flow=350,\r\n    respiratory_rate=18\r\n)\r\nresult = analyzer.analyze_metrics(\"copd\", copd_metrics)\r\nprint(f\"Health Score: {result.health_score}\")\r\n\r\n```\r\n\r\n### Exporting Results\r\n```python\r\n# Export Example\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\nfrom proofly.export import ReportGenerator\r\nfrom proofly.enums import ReportFormat\r\n\r\nanalyzer = HealthAnalyzer()\r\nmetrics = DiabetesMetrics(blood_glucose=120, hba1c=6.5, blood_pressure=130)\r\nresult = analyzer.analyze_metrics(\"diabetes\", metrics)\r\n\r\nreport = ReportGenerator.create_report(\r\n    result,\r\n    format=ReportFormat.PDF,\r\n    include_graphs=True,\r\n    include_recommendations=True\r\n)\r\nprint(report['data'])\r\n```\r\n\r\n### Error Handling\r\n```python\r\nfrom proofly import HealthAnalyzer\r\nfrom proofly.models import DiabetesMetrics\r\nfrom proofly.exceptions import ValidationError, ConfigurationError, AnalysisError\r\n\r\nanalyzer = HealthAnalyzer()\r\ntry:\r\n    result = analyzer.analyze_metrics(\r\n        condition=\"diabetes\",\r\n        metrics=DiabetesMetrics(\r\n            blood_glucose=500,\r\n            hba1c=6.5,\r\n            blood_pressure=130\r\n        )\r\n    )\r\nexcept ValidationError as e:\r\n    print(f\"Validation Error: {e.message}\")\r\n```\r\n\r\n## License\r\nDistributed under the MIT License. See `LICENSE` for more information.\r\n\r\n## Support\r\n* Issue Tracker: [GitHub Issues](https://github.com/moroii69/proofly/issues)\r\n* Email Support: support@proofly.xyz\r\n\r\n## Acknowledgments\r\n* Built with input from healthcare professionals\r\n* Implements evidence-based medical guidelines\r\n* Uses validated statistical models\r\n* Follows healthcare industry best practices\r\n* Adheres to HIPAA compliance standards\r\n",
    "bugtrack_url": null,
    "license": "Proofly - A health tracking and management application designed to generate professional invoices, bills, and receipts while managing user health data securely. Copyright (C) 2024 Mohammed Ufraan  This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.  You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.  For support or inquiries, you can contact me via email at: ufraaan@example.com  For physical mail, you can send correspondence to: Mohammed Ufraan [kurosen930@gmail.com] ",
    "summary": "Enterprise-grade health metrics analysis and prediction engine",
    "version": "1.2.4",
    "project_urls": {
        "Homepage": "https://github.com/moroii69/proofly"
    },
    "split_keywords": [
        "health",
        " analytics",
        " medical",
        " prediction"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "434b0bf1734b1291a0e5e646bf9c7489dabcf2dea9f541719e4acb76b087707e",
                "md5": "3901971ecb38a56e19e17b000d8c500d",
                "sha256": "6e7beff9a36bb6772d1cf6f94e70a219be1701fe9f42011187202856b985ac25"
            },
            "downloads": -1,
            "filename": "proofly-1.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3901971ecb38a56e19e17b000d8c500d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8446,
            "upload_time": "2024-12-30T16:55:31",
            "upload_time_iso_8601": "2024-12-30T16:55:31.332232Z",
            "url": "https://files.pythonhosted.org/packages/43/4b/0bf1734b1291a0e5e646bf9c7489dabcf2dea9f541719e4acb76b087707e/proofly-1.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d1376d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640",
                "md5": "f7ff2eaa5f65bc76a174f83b9dc9ee37",
                "sha256": "b7d21edc987464e285e3748df93eb09be0e308b11b82492d1d7e73282a9db753"
            },
            "downloads": -1,
            "filename": "proofly-1.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "f7ff2eaa5f65bc76a174f83b9dc9ee37",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6999,
            "upload_time": "2024-12-30T16:55:33",
            "upload_time_iso_8601": "2024-12-30T16:55:33.628497Z",
            "url": "https://files.pythonhosted.org/packages/d1/37/6d63a06450bba5ef11074c84346ecfc4a1fbeca1800155374b6aa3192640/proofly-1.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-30 16:55:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "moroii69",
    "github_project": "proofly",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "proofly"
}
        
Elapsed time: 0.38599s