# Protein Turnover
protein turnover computations
Install with:
```bash
pip install protein-turnover
# If you plan to use non-western text for your job names maybe also install unidecode
# pip install Unidecode
# *OR*
pip install protein-turnover[unidecode]
```
This will give you a `turnover` command (equivalent to `python -m protein_turnover`).
## The Turnover Job File
To run protein-turnover you need to create a jobfile (which is in [toml format](https://toml.io)).
e.g.:
```toml
# job name is a display name and should contain information about what the job is about.
job_name = "My Experiment"
pepxml = "chx_cc_repeat.interact.pep.xml"
protxml = "chx_cc_repeat.combined.prot.xml"
# a list of mzML files
mzmlfiles = [ "milla009642.mzML"]
# internal job identifier (*optional* used to create auxilary filenames)
jobid = "job1"
# for cached data. If not specifies cache files will be placed in the
# same directories as original datafiles
cache_dir = "."
# email is *optional*
email = "me.lastname@uwa.edu.au"
[settings]
# these are the default settings
rtTolerance = 15.0
mzTolerance = 1e-5
labelledIsotopeNumber = 15
labelledElement = "N"
maximumLabelEnrichment = 0.95
retentionTimeCorrection = "SimpleMedian"
useObservedMz = false
minProbabilityCutoff = 0.8
enrichmentColumns = 10
```
So a minimal jobfile would be (say):
```toml
job_name = "My Experiment"
pepxml = "chx_cc_repeat.interact.pep.xml"
protxml = "chx_cc_repeat.combined.prot.xml"
mzmlfiles = [ "milla009642.mzML"]
```
### Notes:
- `email` will only work if the `config.MAIL_SERVER` is correct.
- `job_name` is really just a human readable short description of the job.
- `jobid` is used (mainly) to create filenames; for example the final sqlite output file will
be called `{jobid}.sqlite`
- File names that are not absolute are relative to the _current working directory_ of the turnover process.
- If `[settings]` is missing the values will default to the example values above. You only
need to specify values that are different from the ones above.
- `cache_dir`: see below.
## Running a Job
```bash
turnover run {jobfile}.toml
# *OR*
python -m protein_turnover run {jobfile}.toml
# alter configuration and use info level logging and log to logfile.log
turnover --level=info --logfile=logfile.log run {jobfile}.toml
```
### Cache Files and `cache_dir`
Turnover translates all the `.mzML`, `pep.xml`, and `prot.xml` files into pandas DataFrames
stored in `.parquet` [format](https://parquet.apache.org/), plus an internal (to turnover) format that make it easy to quickly scan spectra using [`mmap`](https://docs.python.org/3/library/mmap.html).
These files are cached in `cache_dir` based on an sha256 hash of the contents of each file.
Thus re-runs of the job don't need to (re)-generate these files again.
Because of the sha256 hash you can used a single `cache_dir` for _all_ jobs.
If the cache files are deleted, they will be recreated when the job is run again.
If `cache_dir` is not specified the the
cached files will be placed in the same directory as the originator xml files.
## Viewing
One the job has run you can view the results in a browser
```bash
pip install protein-turnover-website
turnover view {jobfile}.toml
```
# Windows
A default install of python on [windows](https://www.python.org/downloads/windows/)
Will give you a `py` function instead of a `python` function. Go to the search bar and type `cmd`. In
the `cmd` shell you should use instead of `turnover ...` `py -m protein_turnver ...`
Raw data
{
"_id": null,
"home_page": "https://github.com/arabidopsis/protein_turnover.git",
"name": "protein-turnover",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "Ian Castleden",
"author_email": "ian.castleden@uwa.edu.au",
"download_url": "https://files.pythonhosted.org/packages/62/ce/01f077f10464a09e060cf36a70713c16f11b7a58fb982630b380a4530d49/protein_turnover-0.5.6.tar.gz",
"platform": null,
"description": "# Protein Turnover\n\nprotein turnover computations\n\nInstall with:\n\n```bash\npip install protein-turnover\n# If you plan to use non-western text for your job names maybe also install unidecode\n# pip install Unidecode\n# *OR*\npip install protein-turnover[unidecode]\n```\n\nThis will give you a `turnover` command (equivalent to `python -m protein_turnover`).\n\n## The Turnover Job File\n\nTo run protein-turnover you need to create a jobfile (which is in [toml format](https://toml.io)).\n\ne.g.:\n\n```toml\n# job name is a display name and should contain information about what the job is about.\njob_name = \"My Experiment\"\npepxml = \"chx_cc_repeat.interact.pep.xml\"\nprotxml = \"chx_cc_repeat.combined.prot.xml\"\n# a list of mzML files\nmzmlfiles = [ \"milla009642.mzML\"]\n# internal job identifier (*optional* used to create auxilary filenames)\njobid = \"job1\"\n# for cached data. If not specifies cache files will be placed in the\n# same directories as original datafiles\ncache_dir = \".\"\n# email is *optional*\nemail = \"me.lastname@uwa.edu.au\"\n\n[settings]\n# these are the default settings\nrtTolerance = 15.0\nmzTolerance = 1e-5\nlabelledIsotopeNumber = 15\nlabelledElement = \"N\"\nmaximumLabelEnrichment = 0.95\nretentionTimeCorrection = \"SimpleMedian\"\nuseObservedMz = false\nminProbabilityCutoff = 0.8\nenrichmentColumns = 10\n```\n\nSo a minimal jobfile would be (say):\n\n```toml\njob_name = \"My Experiment\"\npepxml = \"chx_cc_repeat.interact.pep.xml\"\nprotxml = \"chx_cc_repeat.combined.prot.xml\"\nmzmlfiles = [ \"milla009642.mzML\"]\n```\n\n### Notes:\n\n- `email` will only work if the `config.MAIL_SERVER` is correct.\n- `job_name` is really just a human readable short description of the job.\n- `jobid` is used (mainly) to create filenames; for example the final sqlite output file will\n be called `{jobid}.sqlite`\n- File names that are not absolute are relative to the _current working directory_ of the turnover process.\n- If `[settings]` is missing the values will default to the example values above. You only\n need to specify values that are different from the ones above.\n- `cache_dir`: see below.\n\n## Running a Job\n\n```bash\nturnover run {jobfile}.toml\n# *OR*\npython -m protein_turnover run {jobfile}.toml\n\n# alter configuration and use info level logging and log to logfile.log\nturnover --level=info --logfile=logfile.log run {jobfile}.toml\n```\n\n### Cache Files and `cache_dir`\n\nTurnover translates all the `.mzML`, `pep.xml`, and `prot.xml` files into pandas DataFrames\nstored in `.parquet` [format](https://parquet.apache.org/), plus an internal (to turnover) format that make it easy to quickly scan spectra using [`mmap`](https://docs.python.org/3/library/mmap.html).\n\nThese files are cached in `cache_dir` based on an sha256 hash of the contents of each file.\nThus re-runs of the job don't need to (re)-generate these files again.\n\nBecause of the sha256 hash you can used a single `cache_dir` for _all_ jobs.\n\nIf the cache files are deleted, they will be recreated when the job is run again.\n\nIf `cache_dir` is not specified the the\ncached files will be placed in the same directory as the originator xml files.\n\n## Viewing\n\nOne the job has run you can view the results in a browser\n\n```bash\npip install protein-turnover-website\nturnover view {jobfile}.toml\n```\n\n# Windows\n\nA default install of python on [windows](https://www.python.org/downloads/windows/)\nWill give you a `py` function instead of a `python` function. Go to the search bar and type `cmd`. In\nthe `cmd` shell you should use instead of `turnover ...` `py -m protein_turnver ...`\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "protein turnover pipeline",
"version": "0.5.6",
"project_urls": {
"Homepage": "https://github.com/arabidopsis/protein_turnover.git",
"Repository": "https://github.com/arabidopsis/protein_turnover.git"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aa4ce1990d8838a397c107413deaf98c3b7d54803951cd0ca39ecdfe56c15120",
"md5": "81e919df0a23bfcf9cfd1f240aa3c617",
"sha256": "7374664069a41c6c5e6e9bead9ce493c2307e90692169545cb6005f2ba320b10"
},
"downloads": -1,
"filename": "protein_turnover-0.5.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "81e919df0a23bfcf9cfd1f240aa3c617",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 92754,
"upload_time": "2024-11-07T05:32:26",
"upload_time_iso_8601": "2024-11-07T05:32:26.136509Z",
"url": "https://files.pythonhosted.org/packages/aa/4c/e1990d8838a397c107413deaf98c3b7d54803951cd0ca39ecdfe56c15120/protein_turnover-0.5.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "62ce01f077f10464a09e060cf36a70713c16f11b7a58fb982630b380a4530d49",
"md5": "e6473c3242bd352dc59dbfb5486b6012",
"sha256": "6a46e79a4cd6987d1b4a082c5a20dd59436405dc617e6eb3427186ada2820d46"
},
"downloads": -1,
"filename": "protein_turnover-0.5.6.tar.gz",
"has_sig": false,
"md5_digest": "e6473c3242bd352dc59dbfb5486b6012",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 78754,
"upload_time": "2024-11-07T05:32:29",
"upload_time_iso_8601": "2024-11-07T05:32:29.756152Z",
"url": "https://files.pythonhosted.org/packages/62/ce/01f077f10464a09e060cf36a70713c16f11b7a58fb982630b380a4530d49/protein_turnover-0.5.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-07 05:32:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "arabidopsis",
"github_project": "protein_turnover",
"github_not_found": true,
"lcname": "protein-turnover"
}