# Proximity Analysis with ArcPy
Perform spatial proximity analysis using ArcPy with ease. This package provides a Python class `proximity` tailored for analyzing spatial relationships in GIS data, specifically designed for Urban Institute's Quality of Life (QOL) spatial variables.
## Installation
Install `proximityuri` from PyPI using pip:
pip install proximityui
## Usage
import proximityuri as P
# Example usage:
prox_analysis = P.proximity('TaxData2023', 'Pharmacy2024')
# Merge additional pharmacy data
prox_analysis.merge('Pharmacy', 'PharmacyUnmatched')
# Add a new field for residential proximity to pharmacy
prox_analysis.addfield('ResNearPharmacy')
# Summarize the results
prox_analysis.summarize('r', 'd', ProjectGDB)
# Export summarized results to a text file
prox_analysis.exporttxt(path, 'QOL_46_2023.txt')
## Methods
__init__(self, tax_parcel_feature_class, proximity_feature_class): Initialize the proximity class with the tax parcel feature class and proximity feature class.
merge(self, *feature_classes_to_be_merged): Merge proximity feature classes from multiple sources into one feature class for analysis.
addfield(self, new_field_name): Add a new field to the tax parcel feature class.
summarize(self, near_residential_output_table, housing_units_table, geodatabase): Summarize residential units near the proximity feature class and export results to a geodatabase.
exporttxt(self, output_directory, final_txt_name): Export summarized results to a text file in the specified directory.
## License
This project is licensed under the MIT License - see the LICENSE file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/ProvidenceAdu/ProximityUI",
"name": "proximityunri",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "urban institute, python, QOL, quality of life explorer",
"author": "Providence Adu,Ph.D.",
"author_email": "padu@charlotte.edu",
"download_url": "https://files.pythonhosted.org/packages/1a/1b/274e421a4fa3107bbbec1424360a220aa90b0d690e62e15fde8485b6ab05/proximityunri-1.1.tar.gz",
"platform": null,
"description": "# Proximity Analysis with ArcPy\n\nPerform spatial proximity analysis using ArcPy with ease. This package provides a Python class `proximity` tailored for analyzing spatial relationships in GIS data, specifically designed for Urban Institute's Quality of Life (QOL) spatial variables.\n\n## Installation\n\nInstall `proximityuri` from PyPI using pip:\n\npip install proximityui\n\n## Usage\n\nimport proximityuri as P\n\n# Example usage:\nprox_analysis = P.proximity('TaxData2023', 'Pharmacy2024')\n\n# Merge additional pharmacy data\nprox_analysis.merge('Pharmacy', 'PharmacyUnmatched')\n\n# Add a new field for residential proximity to pharmacy\nprox_analysis.addfield('ResNearPharmacy')\n\n# Summarize the results\nprox_analysis.summarize('r', 'd', ProjectGDB)\n\n# Export summarized results to a text file\nprox_analysis.exporttxt(path, 'QOL_46_2023.txt')\n\n## Methods\n\n__init__(self, tax_parcel_feature_class, proximity_feature_class): Initialize the proximity class with the tax parcel feature class and proximity feature class.\n\nmerge(self, *feature_classes_to_be_merged): Merge proximity feature classes from multiple sources into one feature class for analysis.\n\naddfield(self, new_field_name): Add a new field to the tax parcel feature class.\n\nsummarize(self, near_residential_output_table, housing_units_table, geodatabase): Summarize residential units near the proximity feature class and export results to a geodatabase.\n\nexporttxt(self, output_directory, final_txt_name): Export summarized results to a text file in the specified directory.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "library code execute various proximity analyses using ArcPy",
"version": "1.1",
"project_urls": {
"Homepage": "https://github.com/ProvidenceAdu/ProximityUI"
},
"split_keywords": [
"urban institute",
" python",
" qol",
" quality of life explorer"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fcd86ab3314faca38af50e8ce5048790e3ae3a506097349c920b24d96f3a6e91",
"md5": "848353923c5402f26b2209fdcccebcd6",
"sha256": "23f3121cf6590a6cf616516d6cf286f6f38051e08adc7bf873ea009f200bc578"
},
"downloads": -1,
"filename": "proximityunri-1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "848353923c5402f26b2209fdcccebcd6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2721,
"upload_time": "2024-07-17T01:21:14",
"upload_time_iso_8601": "2024-07-17T01:21:14.184306Z",
"url": "https://files.pythonhosted.org/packages/fc/d8/6ab3314faca38af50e8ce5048790e3ae3a506097349c920b24d96f3a6e91/proximityunri-1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1a1b274e421a4fa3107bbbec1424360a220aa90b0d690e62e15fde8485b6ab05",
"md5": "972fd6f0aae15f60431cdbc87b3cef99",
"sha256": "2e17b26fddbec30e00ab3c9ba26e15d58930dd0810d02d3cb0dae8f8b3108ff0"
},
"downloads": -1,
"filename": "proximityunri-1.1.tar.gz",
"has_sig": false,
"md5_digest": "972fd6f0aae15f60431cdbc87b3cef99",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2479,
"upload_time": "2024-07-17T01:21:15",
"upload_time_iso_8601": "2024-07-17T01:21:15.733260Z",
"url": "https://files.pythonhosted.org/packages/1a/1b/274e421a4fa3107bbbec1424360a220aa90b0d690e62e15fde8485b6ab05/proximityunri-1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-17 01:21:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ProvidenceAdu",
"github_project": "ProximityUI",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "proximityunri"
}