pseudoflow


Namepseudoflow JSON
Version 2022.12.0 PyPI version JSON
download
home_pagehttps://github.com/quic0/pseudoflow
SummaryPseudoflow algorithm for the parametric minimum cut problem.
upload_time2023-01-01 01:18:36
maintainer
docs_urlNone
authorQuico Spaen
requires_python
licenseNon-commercial license. Not an open-source license.
keywords minimum cut network flow parametric
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # Hochbaum's Pseudoflow (HPF) Algorithm for (Linear) Fully Parametric Minimum Cut
This package provides a parametric implementation of pseudoflow for minimum cut on directed graphs. In the parametric minimum cut problem, the capacity of source-adjacent arcs is monotone non-decreasing in the parameter `lambda` whereas the capacity of sink-adjacent arcs is monotone non-increasing in `lambda`. This solver requires that the capacities of source and sink adjacent arcs are linear in `lambda`: `capacity = constant + multiplier * lambda`.

This fully parametric solver finds the optimal minimum cut for all `lambda` values in a given range. The solution for all lambda values is represented with `O(n)` intervals for the parameter lambda. In each interval, the optimal minimum cut remains the same.

A simple parametric minimum cut solver that provides the optimal minimum cut for a given list of arc capacities is available [here](https://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html), and a non-parametric maximum flow version of pseudoflow is available [here](https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html).

The package provides interfaces for Python, C, and Matlab.

This implementation uses a variant of the fully parametric HPF algorithm as described in:
>    DS Hochbaum (2008), The Pseudoflow algorithm: A new algorithm for the maximum flow problem. Operations Research, 58(4):992-1009.

This implementation does not use *free runs* nor does it use warm starts with informatiom from previous runs (see pg.15). This implementation should therefore **not be used** for comparison with the fully parametric HPF algorithm.

The package provides an option to round capacities that are negative for certain lambda values to zero. This option should **only** be used when each node has a source adjacent arc with capacity `max(0, a * lambda + b)` and a corresponding sink adjacent arc with capacity `max(0, -a * lambda - b)`. Otherwise, the intersection of the cut capacities is wrongly identified.


## Instructions for Python

Install the package with `pip`:

```bash
    pip install pseudoflow
```

#### Example
```python
import networkx as nx  # igraph is also supported
import pseudoflow

G = nx.DiGraph()
G.add_edge(0, 1, const=1, mult=5)
G.add_edge(1, 2, const=9, mult=-3)


source = 0
sink = 2
lambda_range = [0., 2.]

breakpoints, cuts, info = pseudoflow.hpf(
    G,  # Networkx or igraph directed graph.
    source,  # Node id of the source node.
    sink,  # Node id of the sink node.
    const_cap="const",  # Edge attribute with the constant capacity.
    mult_cap="mult",  # Edge attribute with the lambda multiplier.
    lambdaRange=lambda_range,  # (lower, upper) bounds for the lambda parameter.
    roundNegativeCapacity=False  # True if negative arc capacities should be rounded to zero.
)

# breakpoints: list of upper bounds for the lambda intervals.
# cuts: A dictionary with for each node a list indicating whether
#       the node is in the source set of the minimum cut.
print(breakpoints)  # Output: [1., 2.]
print(cuts)  # Output: {0: [1, 1], 1: [0, 1], 2: [0, 0]}
```

## Instructions for C
Navigate to directory `src/pseudoflow/c`, and compile the `hpf` executable with `make`.

To execute the solver, use:
```bash
hpf input-file.txt output-file.txt
```

The input file should contain the graph structure and is assumed to have the following format:
```
    c <comment lines>
    p <# nodes> <# arcs> <lower bound> <upper bound> <round if negative>
    n <source node> s
    n <sink node> t
    a <from-node> <to-node> <constant capacity> <lambda multiplier>
```
where the `a` line is repeated for each arc. The file should satisfy the following conditions:
- Nodes are labeled `0 .. <# nodes> - 1`.
- `<lambda multiplier>` is non-negative if `<from-node> == <source node>` and `<to-node> != <sink-node>`.
- `<lambda multiplier>` is non-positive if `<from-node> != <source node>` and `<to-node> == <sink-node>`.
- `<lambda multiplier>` is zero if `<from-node> != <source node>` and `<to-node> != <sink-node>`.
- `<round if negative>` takes value 1 if the any negative capacity arc should be rounded to 0, and value 0 otherwise.

The solver will generate the following output file:
```
t <time (in sec) read data> <time (in sec) initialize> <time (in sec) solve>
s <# arc scans> <# mergers> <# pushes> <# relabels > <# gap >
p <number of lambda intervals = k>
l <lambda upperbound interval 1> ... <lambda upperbound interval k>
n <node-id> <sourceset indicator interval 1 > .. <indicator interval k>
```
The `n` line appears for each node. `<sourceset indicator interval 1 >` indicates whether the node is in the source set of the minimum cut for the first lambda interval.

See `src/pseudoflow/c/example` for an example.

## Instructions for Matlab

Copy the content of `src/pseudoflow/matlab` to your current directory.

From within Matlab, compile the mex extension with:
```matlab
    mex hpfMatlab.c
```

The solver is accessible via the `hpf` function with the following signature:
```matlab
    [cuts, lambdas, stats, times]  = hpf(arcmatrix, num_nodes, source, sink lambda_range, rounding);
```

#### Inputs:
* **arcmatrix**: Each row of the matrix has the following structure: `[from_node, to_node, constant capacity, lambda multiplier]`
* **num_nodes**: Number of nodes in the graph
* **source_node**: The numeric label of the source node
* **sink_node**: The numeric label of the sink node
* **lambda_range**: [lower bound, upper bound] for the lambda parameter.
* **rounding**: Set to 1 if negative arc capacities should be rounded to zero, and 0 otherwise.

#### Outputs:
* **cuts**: n x k matrix where `A(i,j)` is 1 if node `i` is in the source set for lambda interval `j`, and 0 otherwise.
* **lambdas**: 1 x k matrix where `L(j)` is the upper bound of the lambda interval `j`.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/quic0/pseudoflow",
    "name": "pseudoflow",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "minimum cut,network flow,parametric",
    "author": "Quico Spaen",
    "author_email": "qspaen@berkeley.edu",
    "download_url": "https://files.pythonhosted.org/packages/7f/73/3026ba04192286d1caa9415d669ece7fe77469f3fe4ef245a9fbaa8b1101/pseudoflow-2022.12.0.tar.gz",
    "platform": null,
    "description": "# Hochbaum's Pseudoflow (HPF) Algorithm for (Linear) Fully Parametric Minimum Cut\r\nThis package provides a parametric implementation of pseudoflow for minimum cut on directed graphs. In the parametric minimum cut problem, the capacity of source-adjacent arcs is monotone non-decreasing in the parameter `lambda` whereas the capacity of sink-adjacent arcs is monotone non-increasing in `lambda`. This solver requires that the capacities of source and sink adjacent arcs are linear in `lambda`: `capacity = constant + multiplier * lambda`.\r\n\r\nThis fully parametric solver finds the optimal minimum cut for all `lambda` values in a given range. The solution for all lambda values is represented with `O(n)` intervals for the parameter lambda. In each interval, the optimal minimum cut remains the same.\r\n\r\nA simple parametric minimum cut solver that provides the optimal minimum cut for a given list of arc capacities is available [here](https://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html), and a non-parametric maximum flow version of pseudoflow is available [here](https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html).\r\n\r\nThe package provides interfaces for Python, C, and Matlab.\r\n\r\nThis implementation uses a variant of the fully parametric HPF algorithm as described in:\r\n>    DS Hochbaum (2008), The Pseudoflow algorithm: A new algorithm for the maximum flow problem. Operations Research, 58(4):992-1009.\r\n\r\nThis implementation does not use *free runs* nor does it use warm starts with informatiom from previous runs (see pg.15). This implementation should therefore **not be used** for comparison with the fully parametric HPF algorithm.\r\n\r\nThe package provides an option to round capacities that are negative for certain lambda values to zero. This option should **only** be used when each node has a source adjacent arc with capacity `max(0, a * lambda + b)` and a corresponding sink adjacent arc with capacity `max(0, -a * lambda - b)`. Otherwise, the intersection of the cut capacities is wrongly identified.\r\n\r\n\r\n## Instructions for Python\r\n\r\nInstall the package with `pip`:\r\n\r\n```bash\r\n    pip install pseudoflow\r\n```\r\n\r\n#### Example\r\n```python\r\nimport networkx as nx  # igraph is also supported\r\nimport pseudoflow\r\n\r\nG = nx.DiGraph()\r\nG.add_edge(0, 1, const=1, mult=5)\r\nG.add_edge(1, 2, const=9, mult=-3)\r\n\r\n\r\nsource = 0\r\nsink = 2\r\nlambda_range = [0., 2.]\r\n\r\nbreakpoints, cuts, info = pseudoflow.hpf(\r\n    G,  # Networkx or igraph directed graph.\r\n    source,  # Node id of the source node.\r\n    sink,  # Node id of the sink node.\r\n    const_cap=\"const\",  # Edge attribute with the constant capacity.\r\n    mult_cap=\"mult\",  # Edge attribute with the lambda multiplier.\r\n    lambdaRange=lambda_range,  # (lower, upper) bounds for the lambda parameter.\r\n    roundNegativeCapacity=False  # True if negative arc capacities should be rounded to zero.\r\n)\r\n\r\n# breakpoints: list of upper bounds for the lambda intervals.\r\n# cuts: A dictionary with for each node a list indicating whether\r\n#       the node is in the source set of the minimum cut.\r\nprint(breakpoints)  # Output: [1., 2.]\r\nprint(cuts)  # Output: {0: [1, 1], 1: [0, 1], 2: [0, 0]}\r\n```\r\n\r\n## Instructions for C\r\nNavigate to directory `src/pseudoflow/c`, and compile the `hpf` executable with `make`.\r\n\r\nTo execute the solver, use:\r\n```bash\r\nhpf input-file.txt output-file.txt\r\n```\r\n\r\nThe input file should contain the graph structure and is assumed to have the following format:\r\n```\r\n    c <comment lines>\r\n    p <# nodes> <# arcs> <lower bound> <upper bound> <round if negative>\r\n    n <source node> s\r\n    n <sink node> t\r\n    a <from-node> <to-node> <constant capacity> <lambda multiplier>\r\n```\r\nwhere the `a` line is repeated for each arc. The file should satisfy the following conditions:\r\n- Nodes are labeled `0 .. <# nodes> - 1`.\r\n- `<lambda multiplier>` is non-negative if `<from-node> == <source node>` and `<to-node> != <sink-node>`.\r\n- `<lambda multiplier>` is non-positive if `<from-node> != <source node>` and `<to-node> == <sink-node>`.\r\n- `<lambda multiplier>` is zero if `<from-node> != <source node>` and `<to-node> != <sink-node>`.\r\n- `<round if negative>` takes value 1 if the any negative capacity arc should be rounded to 0, and value 0 otherwise.\r\n\r\nThe solver will generate the following output file:\r\n```\r\nt <time (in sec) read data> <time (in sec) initialize> <time (in sec) solve>\r\ns <# arc scans> <# mergers> <# pushes> <# relabels > <# gap >\r\np <number of lambda intervals = k>\r\nl <lambda upperbound interval 1> ... <lambda upperbound interval k>\r\nn <node-id> <sourceset indicator interval 1 > .. <indicator interval k>\r\n```\r\nThe `n` line appears for each node. `<sourceset indicator interval 1 >` indicates whether the node is in the source set of the minimum cut for the first lambda interval.\r\n\r\nSee `src/pseudoflow/c/example` for an example.\r\n\r\n## Instructions for Matlab\r\n\r\nCopy the content of `src/pseudoflow/matlab` to your current directory.\r\n\r\nFrom within Matlab, compile the mex extension with:\r\n```matlab\r\n    mex hpfMatlab.c\r\n```\r\n\r\nThe solver is accessible via the `hpf` function with the following signature:\r\n```matlab\r\n    [cuts, lambdas, stats, times]  = hpf(arcmatrix, num_nodes, source, sink lambda_range, rounding);\r\n```\r\n\r\n#### Inputs:\r\n* **arcmatrix**: Each row of the matrix has the following structure: `[from_node, to_node, constant capacity, lambda multiplier]`\r\n* **num_nodes**: Number of nodes in the graph\r\n* **source_node**: The numeric label of the source node\r\n* **sink_node**: The numeric label of the sink node\r\n* **lambda_range**: [lower bound, upper bound] for the lambda parameter.\r\n* **rounding**: Set to 1 if negative arc capacities should be rounded to zero, and 0 otherwise.\r\n\r\n#### Outputs:\r\n* **cuts**: n x k matrix where `A(i,j)` is 1 if node `i` is in the source set for lambda interval `j`, and 0 otherwise.\r\n* **lambdas**: 1 x k matrix where `L(j)` is the upper bound of the lambda interval `j`.\r\n",
    "bugtrack_url": null,
    "license": "Non-commercial license. Not an open-source license.",
    "summary": "Pseudoflow algorithm for the parametric minimum cut problem.",
    "version": "2022.12.0",
    "split_keywords": [
        "minimum cut",
        "network flow",
        "parametric"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "4cb9bc096e3ab9e535407de9f7a9ae03",
                "sha256": "a4a3c684a0d158af15d5c8244cd5aee04d1c6d0204a088449d8649ca63e76fbc"
            },
            "downloads": -1,
            "filename": "pseudoflow-2022.12.0-cp38-cp38-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "4cb9bc096e3ab9e535407de9f7a9ae03",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": null,
            "size": 20002,
            "upload_time": "2023-01-01T01:18:34",
            "upload_time_iso_8601": "2023-01-01T01:18:34.325860Z",
            "url": "https://files.pythonhosted.org/packages/c3/41/58cf145137ecd083088eee309316e7b5c75524545d601010775dbe7d209c/pseudoflow-2022.12.0-cp38-cp38-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "8e0f86461b5b4df6e19d86f86e794dd0",
                "sha256": "83751d670b57d6e45f108a8546899d7c58fe1605137876e37e56c5d7cfb2ed47"
            },
            "downloads": -1,
            "filename": "pseudoflow-2022.12.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8e0f86461b5b4df6e19d86f86e794dd0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 86735,
            "upload_time": "2023-01-01T01:18:36",
            "upload_time_iso_8601": "2023-01-01T01:18:36.335334Z",
            "url": "https://files.pythonhosted.org/packages/7f/73/3026ba04192286d1caa9415d669ece7fe77469f3fe4ef245a9fbaa8b1101/pseudoflow-2022.12.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-01 01:18:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "quic0",
    "github_project": "pseudoflow",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pseudoflow"
}
        
Elapsed time: 0.15035s