# PSFMachine
*PRF photometry with Kepler*
<a href="https://github.com/ssdatalab/psfmachine/workflows/tests.yml"><img src="https://github.com/ssdatalab/psfmachine/workflows/pytest/badge.svg" alt="Test status"/></a>
<a href="https://pypi.python.org/pypi/psfmachine"><img src="https://img.shields.io/pypi/v/psfmachine" alt="pypi status"></a>
<a href="https://zenodo.org/record/4784073"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4784073.svg"></a>
Check out the [documentation](https://ssdatalab.github.io/psfmachine/).
Check out the [paper](#)
`PSFMachine` is an open source Python tool for creating models of instrument effective Point Spread Functions (ePSFs), a.k.a Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. `PSFMachine` is able to quickly derive photometry from stacks of *Kepler* images and separate crowded sources.
# Installation
```
pip install psfmachine
```
# Example use
Below is an example script that shows how to use `PSFMachine`. Depending on the speed or your computer fitting this sort of model will probably take ~10 minutes to build 200 light curves. You can speed this up by changing some of the input parameters.
```python
import psfmachine as psf
import lightkurve as lk
tpfs = lk.search_targetpixelfile('Kepler-16', mission='Kepler', quarter=12, radius=1000, limit=200, cadence='long').download_all(quality_bitmask=None)
machine = psf.TPFMachine.from_TPFs(tpfs, n_r_knots=10, n_phi_knots=12)
machine.fit_lightcurves()
```
Funding for this project is provided by NASA ROSES grant number 80NSSC20K0874.
Raw data
{
"_id": null,
"home_page": "https://ssdatalab.github.io/psfmachine/",
"name": "psfmachine",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "NASA, Kepler, Astronomy",
"author": "Christina Hedges",
"author_email": "christina.l.hedges@nasa.gov",
"download_url": "https://files.pythonhosted.org/packages/d9/57/1ade1267a5971da40c80f14ccedbaf90ac9e08f01ecbd0218a1ae7b033fa/psfmachine-1.1.4.tar.gz",
"platform": null,
"description": "# PSFMachine\n\n*PRF photometry with Kepler*\n\n<a href=\"https://github.com/ssdatalab/psfmachine/workflows/tests.yml\"><img src=\"https://github.com/ssdatalab/psfmachine/workflows/pytest/badge.svg\" alt=\"Test status\"/></a>\n<a href=\"https://pypi.python.org/pypi/psfmachine\"><img src=\"https://img.shields.io/pypi/v/psfmachine\" alt=\"pypi status\"></a>\n<a href=\"https://zenodo.org/record/4784073\"><img src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4784073.svg\"></a>\n\nCheck out the [documentation](https://ssdatalab.github.io/psfmachine/).\nCheck out the [paper](#)\n\n`PSFMachine` is an open source Python tool for creating models of instrument effective Point Spread Functions (ePSFs), a.k.a Pixel Response Functions (PRFs). These models are then used to fit a scene in a stack of astronomical images. `PSFMachine` is able to quickly derive photometry from stacks of *Kepler* images and separate crowded sources.\n\n# Installation\n\n```\npip install psfmachine\n```\n\n# Example use\n\nBelow is an example script that shows how to use `PSFMachine`. Depending on the speed or your computer fitting this sort of model will probably take ~10 minutes to build 200 light curves. You can speed this up by changing some of the input parameters.\n\n```python\nimport psfmachine as psf\nimport lightkurve as lk\ntpfs = lk.search_targetpixelfile('Kepler-16', mission='Kepler', quarter=12, radius=1000, limit=200, cadence='long').download_all(quality_bitmask=None)\nmachine = psf.TPFMachine.from_TPFs(tpfs, n_r_knots=10, n_phi_knots=12)\nmachine.fit_lightcurves()\n```\n\nFunding for this project is provided by NASA ROSES grant number 80NSSC20K0874.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Tool to perform fast PSF photometry of primary and background targets from Kepler/K2 Target Pixel Files",
"version": "1.1.4",
"project_urls": {
"Homepage": "https://ssdatalab.github.io/psfmachine/",
"Repository": "https://github.com/ssdatalab/psfmachine"
},
"split_keywords": [
"nasa",
" kepler",
" astronomy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9e0d02917b15b699b3fcd11024501abaf91e398ecea75ca3d9927e1a30895daa",
"md5": "aab42e31918e4ddc1ca9b8d7c56bb62b",
"sha256": "f45f316929c9f2dbc4aae9b5f4e9554f5fdee7ceef5f6f329d1b8e551ba29f18"
},
"downloads": -1,
"filename": "psfmachine-1.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "aab42e31918e4ddc1ca9b8d7c56bb62b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 72330,
"upload_time": "2023-12-15T21:10:44",
"upload_time_iso_8601": "2023-12-15T21:10:44.701227Z",
"url": "https://files.pythonhosted.org/packages/9e/0d/02917b15b699b3fcd11024501abaf91e398ecea75ca3d9927e1a30895daa/psfmachine-1.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d9571ade1267a5971da40c80f14ccedbaf90ac9e08f01ecbd0218a1ae7b033fa",
"md5": "f4e950939c579e2acb255207306c48ea",
"sha256": "a3f2ae98d3505cec053abdcf5f51728fe7a1ca0889ce769d32b9d8183402ce89"
},
"downloads": -1,
"filename": "psfmachine-1.1.4.tar.gz",
"has_sig": false,
"md5_digest": "f4e950939c579e2acb255207306c48ea",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 67138,
"upload_time": "2023-12-15T21:10:46",
"upload_time_iso_8601": "2023-12-15T21:10:46.806378Z",
"url": "https://files.pythonhosted.org/packages/d9/57/1ade1267a5971da40c80f14ccedbaf90ac9e08f01ecbd0218a1ae7b033fa/psfmachine-1.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-15 21:10:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ssdatalab",
"github_project": "psfmachine",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "psfmachine"
}