# psignifit
Python toolbox for Bayesian psychometric function estimation
[](https://github.com/wichmann-lab/python-psignifit/actions/workflows/ci-tests.yml)
[](https://psignifit.readthedocs.io/en/latest/?badge=latest)
[](https://pypi.python.org/pypi/psignifit)
[](https://doi.org/10.5281/zenodo.14750140)
## Getting started
Install *psignifit* with `pip`:
```
pip install psignifit
```
See [the documentation](https://psignifit.readthedocs.io/en/latest/) to get started.
## How to cite
If you use this package, please cite both *this implementation*:
**Zito, T., Künstle, D., Aguilar, G., Berkes, P., & Schwetlick, L. psignifit 4.3 (Version 4.3) [Computer software]. https://doi.org/10.5281/zenodo.14750140**
as well as the *original paper*:
**Schütt, H. H., Harmeling, S., Macke, J. H., & Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122, 105–123. [doi:10.1016/j.visres.2016.02.002](https://doi.org/10.1016/j.visres.2016.02.002)**
## Contributors
See the [CONTRIBUTORS](https://github.com/wichmann-lab/python-psignifit/blob/master/CONTRIBUTORS) file
## License and COPYRIGHT
See the [COPYRIGHT](https://github.com/wichmann-lab/python-psignifit/blob/master/COPYRIGHT) file
Raw data
{
"_id": null,
"home_page": null,
"name": "psignifit",
"maintainer": "psignifit contributors, www.wichmann-lab.org",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "psychometric, psychophysics, function, statistics",
"author": "psignifit contributors, www.wichmann-lab.org",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/f9/8a/c937a54349ffaa0bf277f0bae25ce2c7cf44ebc898148606d127a7d52df6/psignifit-4.3.tar.gz",
"platform": null,
"description": "# psignifit\n\nPython toolbox for Bayesian psychometric function estimation\n\n[](https://github.com/wichmann-lab/python-psignifit/actions/workflows/ci-tests.yml)\n[](https://psignifit.readthedocs.io/en/latest/?badge=latest)\n[](https://pypi.python.org/pypi/psignifit)\n[](https://doi.org/10.5281/zenodo.14750140)\n\n## Getting started\n\nInstall *psignifit* with `pip`:\n```\npip install psignifit\n```\n\nSee [the documentation](https://psignifit.readthedocs.io/en/latest/) to get started.\n\n## How to cite\n\nIf you use this package, please cite both *this implementation*:\n\n**Zito, T., K\u00fcnstle, D., Aguilar, G., Berkes, P., & Schwetlick, L. psignifit 4.3 (Version 4.3) [Computer software]. https://doi.org/10.5281/zenodo.14750140**\n\nas well as the *original paper*:\n\n\n**Sch\u00fctt, H. H., Harmeling, S., Macke, J. H., & Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122, 105\u2013123. [doi:10.1016/j.visres.2016.02.002](https://doi.org/10.1016/j.visres.2016.02.002)**\n\n\n## Contributors\n\nSee the [CONTRIBUTORS](https://github.com/wichmann-lab/python-psignifit/blob/master/CONTRIBUTORS) file\n\n## License and COPYRIGHT\n\nSee the [COPYRIGHT](https://github.com/wichmann-lab/python-psignifit/blob/master/COPYRIGHT) file\n",
"bugtrack_url": null,
"license": "This file is part of psignifit\n \n Python toolbox for Bayesian psychometric function estimation.\n \n All the code in this package is distributed under the following conditions:\n \n Copyright (c) 2016-2025, psignifit contributors, www.wichmann-lab.org \n \n This program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n \n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.\n \n You should have received a copy of the GNU General Public License\n along with this program. If not, see <http://www.gnu.org/licenses/>.\n ",
"summary": "Toolbox for Bayesian psychometric function estimation",
"version": "4.3",
"project_urls": {
"Documentation": "https://psignifit.readthedocs.io/en/latest/",
"Homepage": "http://www.wichmann-lab.org/",
"Issues": "https://github.com/wichmann-lab/python-psignifit/issues",
"Repository": "https://github.com/wichmann-lab/python-psignifit.git"
},
"split_keywords": [
"psychometric",
" psychophysics",
" function",
" statistics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2870931de4c6d038613e0a3c855e173b683253d9a5c4e6179ac4f254adae0fa4",
"md5": "80ea8c7db8701c491917dddc9eeedcf3",
"sha256": "d8b81921993f1b6fc61233109451b55849c1e56f91d5067a6764060e01dba93f"
},
"downloads": -1,
"filename": "psignifit-4.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "80ea8c7db8701c491917dddc9eeedcf3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 38243,
"upload_time": "2025-01-29T14:38:26",
"upload_time_iso_8601": "2025-01-29T14:38:26.581595Z",
"url": "https://files.pythonhosted.org/packages/28/70/931de4c6d038613e0a3c855e173b683253d9a5c4e6179ac4f254adae0fa4/psignifit-4.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f98ac937a54349ffaa0bf277f0bae25ce2c7cf44ebc898148606d127a7d52df6",
"md5": "3555d1bdbae3657b177a7b8a744df894",
"sha256": "a24b0299fe0ebb212f371ba2ad1232366b826d0a5f288a50c555282a8ddf5d41"
},
"downloads": -1,
"filename": "psignifit-4.3.tar.gz",
"has_sig": false,
"md5_digest": "3555d1bdbae3657b177a7b8a744df894",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 51151,
"upload_time": "2025-01-29T14:38:28",
"upload_time_iso_8601": "2025-01-29T14:38:28.607757Z",
"url": "https://files.pythonhosted.org/packages/f9/8a/c937a54349ffaa0bf277f0bae25ce2c7cf44ebc898148606d127a7d52df6/psignifit-4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-29 14:38:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "wichmann-lab",
"github_project": "python-psignifit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "psignifit"
}