pstree


Namepstree JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/hengzhe-zhang/pstree
SummaryAn open source python library for non-linear piecewise symbolic regression based on Genetic Programming
upload_time2023-12-14 02:35:03
maintainer
docs_urlNone
authorHengzhe Zhang
requires_python>=3.6
licenseMIT license
keywords pstree
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ==================
PS-Tree
==================


.. image:: https://img.shields.io/pypi/v/pstree.svg
        :target: https://pypi.python.org/pypi/pstree

.. image:: https://img.shields.io/travis/hengzhe-zhang/pstree.svg
        :target: https://travis-ci.com/hengzhe-zhang/pstree

.. image:: https://readthedocs.org/projects/pstree/badge/?version=latest
        :target: https://pstree.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status




An open source python library for non-linear piecewise symbolic regression based on Genetic Programming


* Free software: MIT license
* Documentation: https://pstree.readthedocs.io.

Introduction
----------------
Piece-wise non-linear regression is a long-standing problem in the machine learning domain that has long plagued machine learning researchers. It is extremely difficult for users to determine the correct partition scheme and non-linear model when there is no prior information. To address this issue, we proposed piece-wise non-linear regression tree (PS-Tree), an automated piece-wise non-linear regression method based on decision tree and genetic programming techniques. Based on such an algorithm framework, our method can produce an explainable model with high accuracy in a short period of time.

Installation
----------------

.. code:: bash

    pip install -U pstree

Features
----------------

* A fully automated piece-wise non-linear regression tool
* A fast genetic programming based symbolic regression tool

Example
----------------
An example of usage:

.. code:: Python

    X, y = load_diabetes(return_X_y=True)
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
    r = PSTreeRegressor(regr_class=GPRegressor, tree_class=DecisionTreeRegressor,
                        height_limit=6, n_pop=25, n_gen=100,
                        basic_primitive='optimal', size_objective=True)
    r.fit(x_train, y_train)
    print(r2_score(y_test, r.predict(x_test)))

Experimental results on SRBench:

.. image:: https://raw.githubusercontent.com/hengzhe-zhang/PS-Tree/master/docs/R2-result.png

Citation
----------------
.. code:: bibtex

    @article{zhang2022ps,
        title={PS-Tree: A piecewise symbolic regression tree},
        author={Zhang, Hengzhe and Zhou, Aimin and Qian, Hong and Zhang, Hu},
        journal={Swarm and Evolutionary Computation},
        volume={71},
        pages={101061},
        year={2022},
        publisher={Elsevier}
    }

* By the way, I would like to express my gratitude to Qi-Hao Huang from Guangzhou University for pointing out that the "minimize" in formula (4) of the paper should be "maximize", corresponding to the code. (https://github.com/hengzhe-zhang/PS-Tree/blob/master/pstree/cluster_gp_sklearn.py#L320-L346)

Credits
--------------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2021-06-28)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hengzhe-zhang/pstree",
    "name": "pstree",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "pstree",
    "author": "Hengzhe Zhang",
    "author_email": "zhenlingcn@foxmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b8/43/9a196069b575e59102d9f830dbda8ef87701d5e4679405320b91f31cb3fa/pstree-0.1.2.tar.gz",
    "platform": null,
    "description": "==================\r\nPS-Tree\r\n==================\r\n\r\n\r\n.. image:: https://img.shields.io/pypi/v/pstree.svg\r\n        :target: https://pypi.python.org/pypi/pstree\r\n\r\n.. image:: https://img.shields.io/travis/hengzhe-zhang/pstree.svg\r\n        :target: https://travis-ci.com/hengzhe-zhang/pstree\r\n\r\n.. image:: https://readthedocs.org/projects/pstree/badge/?version=latest\r\n        :target: https://pstree.readthedocs.io/en/latest/?version=latest\r\n        :alt: Documentation Status\r\n\r\n\r\n\r\n\r\nAn open source python library for non-linear piecewise symbolic regression based on Genetic Programming\r\n\r\n\r\n* Free software: MIT license\r\n* Documentation: https://pstree.readthedocs.io.\r\n\r\nIntroduction\r\n----------------\r\nPiece-wise non-linear regression is a long-standing problem in the machine learning domain that has long plagued machine learning researchers. It is extremely difficult for users to determine the correct partition scheme and non-linear model when there is no prior information. To address this issue, we proposed piece-wise non-linear regression tree (PS-Tree), an automated piece-wise non-linear regression method based on decision tree and genetic programming techniques. Based on such an algorithm framework, our method can produce an explainable model with high accuracy in a short period of time.\r\n\r\nInstallation\r\n----------------\r\n\r\n.. code:: bash\r\n\r\n    pip install -U pstree\r\n\r\nFeatures\r\n----------------\r\n\r\n* A fully automated piece-wise non-linear regression tool\r\n* A fast genetic programming based symbolic regression tool\r\n\r\nExample\r\n----------------\r\nAn example of usage:\r\n\r\n.. code:: Python\r\n\r\n    X, y = load_diabetes(return_X_y=True)\r\n    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\r\n    r = PSTreeRegressor(regr_class=GPRegressor, tree_class=DecisionTreeRegressor,\r\n                        height_limit=6, n_pop=25, n_gen=100,\r\n                        basic_primitive='optimal', size_objective=True)\r\n    r.fit(x_train, y_train)\r\n    print(r2_score(y_test, r.predict(x_test)))\r\n\r\nExperimental results on SRBench:\r\n\r\n.. image:: https://raw.githubusercontent.com/hengzhe-zhang/PS-Tree/master/docs/R2-result.png\r\n\r\nCitation\r\n----------------\r\n.. code:: bibtex\r\n\r\n    @article{zhang2022ps,\r\n        title={PS-Tree: A piecewise symbolic regression tree},\r\n        author={Zhang, Hengzhe and Zhou, Aimin and Qian, Hong and Zhang, Hu},\r\n        journal={Swarm and Evolutionary Computation},\r\n        volume={71},\r\n        pages={101061},\r\n        year={2022},\r\n        publisher={Elsevier}\r\n    }\r\n\r\n* By the way, I would like to express my gratitude to Qi-Hao Huang from Guangzhou University for pointing out that the \"minimize\" in formula (4) of the paper should be \"maximize\", corresponding to the code. (https://github.com/hengzhe-zhang/PS-Tree/blob/master/pstree/cluster_gp_sklearn.py#L320-L346)\r\n\r\nCredits\r\n--------------\r\n\r\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\r\n\r\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\r\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n0.1.0 (2021-06-28)\r\n------------------\r\n\r\n* First release on PyPI.\r\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "An open source python library for non-linear piecewise symbolic regression based on Genetic Programming",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/hengzhe-zhang/pstree"
    },
    "split_keywords": [
        "pstree"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "66ee6dbdd153cbadd241c7944b662b18e4e27be3c337bbdb7842c0fd76a67cdb",
                "md5": "e70be35a67e8347a3e62703ed5c9b25c",
                "sha256": "a53ce98b0e82dc793c49503b69fe6b560b1b15a932480262a5a4664dae966b89"
            },
            "downloads": -1,
            "filename": "pstree-0.1.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e70be35a67e8347a3e62703ed5c9b25c",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 26366,
            "upload_time": "2023-12-14T02:35:01",
            "upload_time_iso_8601": "2023-12-14T02:35:01.395973Z",
            "url": "https://files.pythonhosted.org/packages/66/ee/6dbdd153cbadd241c7944b662b18e4e27be3c337bbdb7842c0fd76a67cdb/pstree-0.1.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b8439a196069b575e59102d9f830dbda8ef87701d5e4679405320b91f31cb3fa",
                "md5": "02bd1607087d1702078e7b8602b694fe",
                "sha256": "2441283a82c5d05da66b0167f67a3a7fb6c97ceb7e92e70db1593a3faeb40bc8"
            },
            "downloads": -1,
            "filename": "pstree-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "02bd1607087d1702078e7b8602b694fe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 101262,
            "upload_time": "2023-12-14T02:35:03",
            "upload_time_iso_8601": "2023-12-14T02:35:03.169821Z",
            "url": "https://files.pythonhosted.org/packages/b8/43/9a196069b575e59102d9f830dbda8ef87701d5e4679405320b91f31cb3fa/pstree-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-14 02:35:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hengzhe-zhang",
    "github_project": "pstree",
    "github_not_found": true,
    "lcname": "pstree"
}
        
Elapsed time: 0.27255s