psy


Namepsy JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/inuyasha2012/pypsy
Summarypsychometrics package, including structural equation model, confirmatory factor analysis, unidimensional item response theory, multidimensional item response theory, cognitive diagnosis model, factor analysis and adaptive testing.
upload_time2018-09-19 07:04:29
maintainer
docs_urlNone
authorchris dai
requires_python
licenseMIT license
keywords psy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            .. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg
        :target: https://travis-ci.org/inuyasha2012/pypsy

.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master
        :target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master

pypsy
=====

`中文 <./README_ZH.rst>`_

`DINA Model and Parameter Estimation: A
   Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`

psychometrics package, including structural equation model, confirmatory
factor analysis, unidimensional item response theory, multidimensional
item response theory, cognitive diagnosis model, factor analysis and
adaptive testing. The package is still a doll. will be finished in
future.

unidimensional item response theory
-----------------------------------

models
~~~~~~

-  binary response data IRT (two parameters, three parameters).

-  grade respone data IRT (GRM model)

Parameter estimation algorithm
------------------------------

-  EM algorithm (2PL, GRM)

-  MCMC algorithm (3PL)

--------------

Multidimensional item response theory (full information item factor analysis)
-----------------------------------------------------------------------------

Parameter estimation algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The initial value
^^^^^^^^^^^^^^^^^

The approximate polychoric correlation is calculated, and the slope
initial value is obtained by factor analysis of the polychoric
correlation matrix.

EM algorithm
^^^^^^^^^^^^

-  E step uses GH integral.

-  M step uses Newton algorithm (sparse matrix is divided into non
   sparse matrix).

Factor rotation
^^^^^^^^^^^^^^^

Gradient projection algorithm

The shortcomings
~~~~~~~~~~~~~~~~

GH integrals can only estimate low dimensional parameters.

--------------

Cognitive diagnosis model
-------------------------

models
~~~~~~

-  Dina

-  ho-dina

parameter estimation algorithms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-  EM algorithm

-  MCMC algorithm

-  maximum likelihood estimation (only for estimating skill parameters
   of subjects)

--------------

Structural equation model
-------------------------

-  contains three parameter estimation methods(ULS, ML and GLS).

-  based on gradient descent

--------------

Confirmatory factor analysis
----------------------------

-  can be used for continuous data, binary data and ordered data.

-  based on gradient descent

-  binary and ordered data based on Polychoric correlation matrix.

--------------

Factor analysis
---------------

For the time being, only for the calculation of full information item
factor analysis, it is very simple.

The algorithm
~~~~~~~~~~~~~

principal component analysis

The rotation algorithm
~~~~~~~~~~~~~~~~~~~~~~

gradient projection

--------------

Adaptive test
-------------

model
~~~~~

Thurston IRT model (multidimensional item response theory model for
personality test)

Algorithm
~~~~~~~~~

Maximum information method for multidimensional item response theory

Require
-------

-  numpy

-  progressbar2

How to use it
-------------

See demo in detail

TODO LIST
---------

-  theta parameterization of CCFA

-  parameter estimation of structural equation models for multivariate
   data

-  Bayesin knowledge tracing (Bayesian knowledge tracking)

-  multidimensional item response theory (full information item factor
   analysis)

-  high dimensional computing algorithm (adaptive integral, etc.)

-  various item response models

-  cognitive diagnosis model

-  G-DINA model

-  Q matrix correlation algorithm

-  Factor analysis

-  maximum likelihood estimation

-  various factor rotation algorithms

-  adaptive

-  adaptive cognitive diagnosis

-  other adaption model

-  standard error and P value

-  code annotation, testing and documentation.

Reference
---------

-  `DINA Model and Parameter Estimation: A
   Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`__
-  `Higher-order latent trait models for cognitive
   diagnosis <http://www.aliquote.org/pub/delatorre2004.pdf>`__
-  `Full-Information Item Factor
   Analysis. <http://conservancy.umn.edu/bitstream/11299/104282/1/v12n3p261.pdf>`__
-  `Multidimensional adaptive
   testing <http://media.metrik.de/uploads/incoming/pub/Literatur/1996_Multidimensional%20adaptive%20testing.pdf>`__
-  `Derivative free gradient projection algorithms for rotation <https://cloudfront.escholarship.org/dist/prd/content/qt9938p4wc/qt9938p4wc.pdf>`__


=======
History
=======

0.0.1 (2018-09-18)
------------------

* First release on PyPI.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/inuyasha2012/pypsy",
    "name": "psy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "psy",
    "author": "chris dai",
    "author_email": "inuyasha021@163.com",
    "download_url": "https://files.pythonhosted.org/packages/91/bd/7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557/psy-0.0.1.tar.gz",
    "platform": "",
    "description": ".. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg\r\n        :target: https://travis-ci.org/inuyasha2012/pypsy\r\n\r\n.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master\r\n        :target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master\r\n\r\npypsy\r\n=====\r\n\r\n`\u4e2d\u6587 <./README_ZH.rst>`_\r\n\r\n`DINA Model and Parameter Estimation: A\r\n   Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`\r\n\r\npsychometrics package, including structural equation model, confirmatory\r\nfactor analysis, unidimensional item response theory, multidimensional\r\nitem response theory, cognitive diagnosis model, factor analysis and\r\nadaptive testing. The package is still a doll. will be finished in\r\nfuture.\r\n\r\nunidimensional item response theory\r\n-----------------------------------\r\n\r\nmodels\r\n~~~~~~\r\n\r\n-  binary response data IRT (two parameters, three parameters).\r\n\r\n-  grade respone data IRT (GRM model)\r\n\r\nParameter estimation algorithm\r\n------------------------------\r\n\r\n-  EM algorithm (2PL, GRM)\r\n\r\n-  MCMC algorithm (3PL\uff09\r\n\r\n--------------\r\n\r\nMultidimensional item response theory (full information item factor analysis)\r\n-----------------------------------------------------------------------------\r\n\r\nParameter estimation algorithm\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nThe initial value\r\n^^^^^^^^^^^^^^^^^\r\n\r\nThe approximate polychoric correlation is calculated, and the slope\r\ninitial value is obtained by factor analysis of the polychoric\r\ncorrelation matrix.\r\n\r\nEM algorithm\r\n^^^^^^^^^^^^\r\n\r\n-  E step uses GH integral.\r\n\r\n-  M step uses Newton algorithm (sparse matrix is divided into non\r\n   sparse matrix).\r\n\r\nFactor rotation\r\n^^^^^^^^^^^^^^^\r\n\r\nGradient projection algorithm\r\n\r\nThe shortcomings\r\n~~~~~~~~~~~~~~~~\r\n\r\nGH integrals can only estimate low dimensional parameters.\r\n\r\n--------------\r\n\r\nCognitive diagnosis model\r\n-------------------------\r\n\r\nmodels\r\n~~~~~~\r\n\r\n-  Dina\r\n\r\n-  ho-dina\r\n\r\nparameter estimation algorithms\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\n-  EM algorithm\r\n\r\n-  MCMC algorithm\r\n\r\n-  maximum likelihood estimation (only for estimating skill parameters\r\n   of subjects)\r\n\r\n--------------\r\n\r\nStructural equation model\r\n-------------------------\r\n\r\n-  contains three parameter estimation methods(ULS, ML and GLS).\r\n\r\n-  based on gradient descent\r\n\r\n--------------\r\n\r\nConfirmatory factor analysis\r\n----------------------------\r\n\r\n-  can be used for continuous data, binary data and ordered data.\r\n\r\n-  based on gradient descent\r\n\r\n-  binary and ordered data based on Polychoric correlation matrix.\r\n\r\n--------------\r\n\r\nFactor analysis\r\n---------------\r\n\r\nFor the time being, only for the calculation of full information item\r\nfactor analysis, it is very simple.\r\n\r\nThe algorithm\r\n~~~~~~~~~~~~~\r\n\r\nprincipal component analysis\r\n\r\nThe rotation algorithm\r\n~~~~~~~~~~~~~~~~~~~~~~\r\n\r\ngradient projection\r\n\r\n--------------\r\n\r\nAdaptive test\r\n-------------\r\n\r\nmodel\r\n~~~~~\r\n\r\nThurston IRT model (multidimensional item response theory model for\r\npersonality test)\r\n\r\nAlgorithm\r\n~~~~~~~~~\r\n\r\nMaximum information method for multidimensional item response theory\r\n\r\nRequire\r\n-------\r\n\r\n-  numpy\r\n\r\n-  progressbar2\r\n\r\nHow to use it\r\n-------------\r\n\r\nSee demo in detail\r\n\r\nTODO LIST\r\n---------\r\n\r\n-  theta parameterization of CCFA\r\n\r\n-  parameter estimation of structural equation models for multivariate\r\n   data\r\n\r\n-  Bayesin knowledge tracing (Bayesian knowledge tracking)\r\n\r\n-  multidimensional item response theory (full information item factor\r\n   analysis)\r\n\r\n-  high dimensional computing algorithm (adaptive integral, etc.)\r\n\r\n-  various item response models\r\n\r\n-  cognitive diagnosis model\r\n\r\n-  G-DINA model\r\n\r\n-  Q matrix correlation algorithm\r\n\r\n-  Factor analysis\r\n\r\n-  maximum likelihood estimation\r\n\r\n-  various factor rotation algorithms\r\n\r\n-  adaptive\r\n\r\n-  adaptive cognitive diagnosis\r\n\r\n-  other adaption model\r\n\r\n-  standard error and P value\r\n\r\n-  code annotation, testing and documentation.\r\n\r\nReference\r\n---------\r\n\r\n-  `DINA Model and Parameter Estimation: A\r\n   Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`__\r\n-  `Higher-order latent trait models for cognitive\r\n   diagnosis <http://www.aliquote.org/pub/delatorre2004.pdf>`__\r\n-  `Full-Information Item Factor\r\n   Analysis. <http://conservancy.umn.edu/bitstream/11299/104282/1/v12n3p261.pdf>`__\r\n-  `Multidimensional adaptive\r\n   testing <http://media.metrik.de/uploads/incoming/pub/Literatur/1996_Multidimensional%20adaptive%20testing.pdf>`__\r\n-  `Derivative free gradient projection algorithms for rotation <https://cloudfront.escholarship.org/dist/prd/content/qt9938p4wc/qt9938p4wc.pdf>`__\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n0.0.1 (2018-09-18)\r\n------------------\r\n\r\n* First release on PyPI.\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "psychometrics package, including structural equation model, confirmatory factor analysis, unidimensional item response theory, multidimensional item response theory, cognitive diagnosis model, factor analysis and adaptive testing.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/inuyasha2012/pypsy"
    },
    "split_keywords": [
        "psy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef452b97f1c60c0d3e5c233911246140229771f62a9760b7f0774d104d34e2b3",
                "md5": "98757a3dc11c3f85d3cd66a4fe3bdd00",
                "sha256": "167c116fb312993f36d3f988e97fff69aa61e261156e800f2e1447e7e7276ab8"
            },
            "downloads": -1,
            "filename": "psy-0.0.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "98757a3dc11c3f85d3cd66a4fe3bdd00",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 38321,
            "upload_time": "2018-09-19T07:04:27",
            "upload_time_iso_8601": "2018-09-19T07:04:27.677366Z",
            "url": "https://files.pythonhosted.org/packages/ef/45/2b97f1c60c0d3e5c233911246140229771f62a9760b7f0774d104d34e2b3/psy-0.0.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "91bd7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557",
                "md5": "22325ac3a9fb81b04315bc4f853bfd66",
                "sha256": "bb674edc63a661b7f3e0447c56b978883dd01e805eb33ffb06238c2f8ee70455"
            },
            "downloads": -1,
            "filename": "psy-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "22325ac3a9fb81b04315bc4f853bfd66",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 71966,
            "upload_time": "2018-09-19T07:04:29",
            "upload_time_iso_8601": "2018-09-19T07:04:29.322710Z",
            "url": "https://files.pythonhosted.org/packages/91/bd/7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557/psy-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2018-09-19 07:04:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "inuyasha2012",
    "github_project": "pypsy",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "tox": true,
    "lcname": "psy"
}
        
Elapsed time: 0.66561s