Name | psy JSON |
Version |
0.0.1
JSON |
| download |
home_page | https://github.com/inuyasha2012/pypsy |
Summary | psychometrics package, including structural equation model, confirmatory factor analysis, unidimensional item response theory, multidimensional item response theory, cognitive diagnosis model, factor analysis and adaptive testing. |
upload_time | 2018-09-19 07:04:29 |
maintainer | |
docs_url | None |
author | chris dai |
requires_python | |
license | MIT license |
keywords |
psy
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
.. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg
:target: https://travis-ci.org/inuyasha2012/pypsy
.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master
:target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master
pypsy
=====
`中文 <./README_ZH.rst>`_
`DINA Model and Parameter Estimation: A
Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`
psychometrics package, including structural equation model, confirmatory
factor analysis, unidimensional item response theory, multidimensional
item response theory, cognitive diagnosis model, factor analysis and
adaptive testing. The package is still a doll. will be finished in
future.
unidimensional item response theory
-----------------------------------
models
~~~~~~
- binary response data IRT (two parameters, three parameters).
- grade respone data IRT (GRM model)
Parameter estimation algorithm
------------------------------
- EM algorithm (2PL, GRM)
- MCMC algorithm (3PL)
--------------
Multidimensional item response theory (full information item factor analysis)
-----------------------------------------------------------------------------
Parameter estimation algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The initial value
^^^^^^^^^^^^^^^^^
The approximate polychoric correlation is calculated, and the slope
initial value is obtained by factor analysis of the polychoric
correlation matrix.
EM algorithm
^^^^^^^^^^^^
- E step uses GH integral.
- M step uses Newton algorithm (sparse matrix is divided into non
sparse matrix).
Factor rotation
^^^^^^^^^^^^^^^
Gradient projection algorithm
The shortcomings
~~~~~~~~~~~~~~~~
GH integrals can only estimate low dimensional parameters.
--------------
Cognitive diagnosis model
-------------------------
models
~~~~~~
- Dina
- ho-dina
parameter estimation algorithms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- EM algorithm
- MCMC algorithm
- maximum likelihood estimation (only for estimating skill parameters
of subjects)
--------------
Structural equation model
-------------------------
- contains three parameter estimation methods(ULS, ML and GLS).
- based on gradient descent
--------------
Confirmatory factor analysis
----------------------------
- can be used for continuous data, binary data and ordered data.
- based on gradient descent
- binary and ordered data based on Polychoric correlation matrix.
--------------
Factor analysis
---------------
For the time being, only for the calculation of full information item
factor analysis, it is very simple.
The algorithm
~~~~~~~~~~~~~
principal component analysis
The rotation algorithm
~~~~~~~~~~~~~~~~~~~~~~
gradient projection
--------------
Adaptive test
-------------
model
~~~~~
Thurston IRT model (multidimensional item response theory model for
personality test)
Algorithm
~~~~~~~~~
Maximum information method for multidimensional item response theory
Require
-------
- numpy
- progressbar2
How to use it
-------------
See demo in detail
TODO LIST
---------
- theta parameterization of CCFA
- parameter estimation of structural equation models for multivariate
data
- Bayesin knowledge tracing (Bayesian knowledge tracking)
- multidimensional item response theory (full information item factor
analysis)
- high dimensional computing algorithm (adaptive integral, etc.)
- various item response models
- cognitive diagnosis model
- G-DINA model
- Q matrix correlation algorithm
- Factor analysis
- maximum likelihood estimation
- various factor rotation algorithms
- adaptive
- adaptive cognitive diagnosis
- other adaption model
- standard error and P value
- code annotation, testing and documentation.
Reference
---------
- `DINA Model and Parameter Estimation: A
Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`__
- `Higher-order latent trait models for cognitive
diagnosis <http://www.aliquote.org/pub/delatorre2004.pdf>`__
- `Full-Information Item Factor
Analysis. <http://conservancy.umn.edu/bitstream/11299/104282/1/v12n3p261.pdf>`__
- `Multidimensional adaptive
testing <http://media.metrik.de/uploads/incoming/pub/Literatur/1996_Multidimensional%20adaptive%20testing.pdf>`__
- `Derivative free gradient projection algorithms for rotation <https://cloudfront.escholarship.org/dist/prd/content/qt9938p4wc/qt9938p4wc.pdf>`__
=======
History
=======
0.0.1 (2018-09-18)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/inuyasha2012/pypsy",
"name": "psy",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "psy",
"author": "chris dai",
"author_email": "inuyasha021@163.com",
"download_url": "https://files.pythonhosted.org/packages/91/bd/7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557/psy-0.0.1.tar.gz",
"platform": "",
"description": ".. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg\r\n :target: https://travis-ci.org/inuyasha2012/pypsy\r\n\r\n.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master\r\n :target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master\r\n\r\npypsy\r\n=====\r\n\r\n`\u4e2d\u6587 <./README_ZH.rst>`_\r\n\r\n`DINA Model and Parameter Estimation: A\r\n Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`\r\n\r\npsychometrics package, including structural equation model, confirmatory\r\nfactor analysis, unidimensional item response theory, multidimensional\r\nitem response theory, cognitive diagnosis model, factor analysis and\r\nadaptive testing. The package is still a doll. will be finished in\r\nfuture.\r\n\r\nunidimensional item response theory\r\n-----------------------------------\r\n\r\nmodels\r\n~~~~~~\r\n\r\n- binary response data IRT (two parameters, three parameters).\r\n\r\n- grade respone data IRT (GRM model)\r\n\r\nParameter estimation algorithm\r\n------------------------------\r\n\r\n- EM algorithm (2PL, GRM)\r\n\r\n- MCMC algorithm (3PL\uff09\r\n\r\n--------------\r\n\r\nMultidimensional item response theory (full information item factor analysis)\r\n-----------------------------------------------------------------------------\r\n\r\nParameter estimation algorithm\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\nThe initial value\r\n^^^^^^^^^^^^^^^^^\r\n\r\nThe approximate polychoric correlation is calculated, and the slope\r\ninitial value is obtained by factor analysis of the polychoric\r\ncorrelation matrix.\r\n\r\nEM algorithm\r\n^^^^^^^^^^^^\r\n\r\n- E step uses GH integral.\r\n\r\n- M step uses Newton algorithm (sparse matrix is divided into non\r\n sparse matrix).\r\n\r\nFactor rotation\r\n^^^^^^^^^^^^^^^\r\n\r\nGradient projection algorithm\r\n\r\nThe shortcomings\r\n~~~~~~~~~~~~~~~~\r\n\r\nGH integrals can only estimate low dimensional parameters.\r\n\r\n--------------\r\n\r\nCognitive diagnosis model\r\n-------------------------\r\n\r\nmodels\r\n~~~~~~\r\n\r\n- Dina\r\n\r\n- ho-dina\r\n\r\nparameter estimation algorithms\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n\r\n- EM algorithm\r\n\r\n- MCMC algorithm\r\n\r\n- maximum likelihood estimation (only for estimating skill parameters\r\n of subjects)\r\n\r\n--------------\r\n\r\nStructural equation model\r\n-------------------------\r\n\r\n- contains three parameter estimation methods(ULS, ML and GLS).\r\n\r\n- based on gradient descent\r\n\r\n--------------\r\n\r\nConfirmatory factor analysis\r\n----------------------------\r\n\r\n- can be used for continuous data, binary data and ordered data.\r\n\r\n- based on gradient descent\r\n\r\n- binary and ordered data based on Polychoric correlation matrix.\r\n\r\n--------------\r\n\r\nFactor analysis\r\n---------------\r\n\r\nFor the time being, only for the calculation of full information item\r\nfactor analysis, it is very simple.\r\n\r\nThe algorithm\r\n~~~~~~~~~~~~~\r\n\r\nprincipal component analysis\r\n\r\nThe rotation algorithm\r\n~~~~~~~~~~~~~~~~~~~~~~\r\n\r\ngradient projection\r\n\r\n--------------\r\n\r\nAdaptive test\r\n-------------\r\n\r\nmodel\r\n~~~~~\r\n\r\nThurston IRT model (multidimensional item response theory model for\r\npersonality test)\r\n\r\nAlgorithm\r\n~~~~~~~~~\r\n\r\nMaximum information method for multidimensional item response theory\r\n\r\nRequire\r\n-------\r\n\r\n- numpy\r\n\r\n- progressbar2\r\n\r\nHow to use it\r\n-------------\r\n\r\nSee demo in detail\r\n\r\nTODO LIST\r\n---------\r\n\r\n- theta parameterization of CCFA\r\n\r\n- parameter estimation of structural equation models for multivariate\r\n data\r\n\r\n- Bayesin knowledge tracing (Bayesian knowledge tracking)\r\n\r\n- multidimensional item response theory (full information item factor\r\n analysis)\r\n\r\n- high dimensional computing algorithm (adaptive integral, etc.)\r\n\r\n- various item response models\r\n\r\n- cognitive diagnosis model\r\n\r\n- G-DINA model\r\n\r\n- Q matrix correlation algorithm\r\n\r\n- Factor analysis\r\n\r\n- maximum likelihood estimation\r\n\r\n- various factor rotation algorithms\r\n\r\n- adaptive\r\n\r\n- adaptive cognitive diagnosis\r\n\r\n- other adaption model\r\n\r\n- standard error and P value\r\n\r\n- code annotation, testing and documentation.\r\n\r\nReference\r\n---------\r\n\r\n- `DINA Model and Parameter Estimation: A\r\n Didactic <http://www.stat.cmu.edu/~brian/PIER-methods/For%202013-03-04/Readings/de%20la%20Torre-dina-est-115-30-jebs.pdf>`__\r\n- `Higher-order latent trait models for cognitive\r\n diagnosis <http://www.aliquote.org/pub/delatorre2004.pdf>`__\r\n- `Full-Information Item Factor\r\n Analysis. <http://conservancy.umn.edu/bitstream/11299/104282/1/v12n3p261.pdf>`__\r\n- `Multidimensional adaptive\r\n testing <http://media.metrik.de/uploads/incoming/pub/Literatur/1996_Multidimensional%20adaptive%20testing.pdf>`__\r\n- `Derivative free gradient projection algorithms for rotation <https://cloudfront.escholarship.org/dist/prd/content/qt9938p4wc/qt9938p4wc.pdf>`__\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n0.0.1 (2018-09-18)\r\n------------------\r\n\r\n* First release on PyPI.\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "psychometrics package, including structural equation model, confirmatory factor analysis, unidimensional item response theory, multidimensional item response theory, cognitive diagnosis model, factor analysis and adaptive testing.",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/inuyasha2012/pypsy"
},
"split_keywords": [
"psy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ef452b97f1c60c0d3e5c233911246140229771f62a9760b7f0774d104d34e2b3",
"md5": "98757a3dc11c3f85d3cd66a4fe3bdd00",
"sha256": "167c116fb312993f36d3f988e97fff69aa61e261156e800f2e1447e7e7276ab8"
},
"downloads": -1,
"filename": "psy-0.0.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "98757a3dc11c3f85d3cd66a4fe3bdd00",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 38321,
"upload_time": "2018-09-19T07:04:27",
"upload_time_iso_8601": "2018-09-19T07:04:27.677366Z",
"url": "https://files.pythonhosted.org/packages/ef/45/2b97f1c60c0d3e5c233911246140229771f62a9760b7f0774d104d34e2b3/psy-0.0.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "91bd7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557",
"md5": "22325ac3a9fb81b04315bc4f853bfd66",
"sha256": "bb674edc63a661b7f3e0447c56b978883dd01e805eb33ffb06238c2f8ee70455"
},
"downloads": -1,
"filename": "psy-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "22325ac3a9fb81b04315bc4f853bfd66",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 71966,
"upload_time": "2018-09-19T07:04:29",
"upload_time_iso_8601": "2018-09-19T07:04:29.322710Z",
"url": "https://files.pythonhosted.org/packages/91/bd/7bafe2a4b8c176743c1a926272c13f77bd9c0ff839653c5f9697deb03557/psy-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2018-09-19 07:04:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "inuyasha2012",
"github_project": "pypsy",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [],
"tox": true,
"lcname": "psy"
}