pthflops


Namepthflops JSON
Version 0.4.2 PyPI version JSON
download
home_pagehttps://github.com/1adrianb/pytorch-estimate-flops
SummaryEstimate FLOPs of neural networks
upload_time2022-05-20 23:40:27
maintainer
docs_urlNone
authorAdrian Bulat
requires_python
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)  [![Test Pytorch Flops Counter](https://github.com/1adrianb/pytorch-estimate-flops/workflows/Test%20Pytorch%20Flops%20Counter/badge.svg)](https://travis-ci.com/1adrianb/pytorch-estimate-flops)
[![PyPI](https://img.shields.io/pypi/v/pthflops.svg?style=flat)](https://pypi.org/project/pthflops/)

# pytorch-estimate-flops

Simple pytorch utility that estimates the number of FLOPs for a given network. For now only some basic operations are supported (basically the ones I needed for my models). More will be added soon.

All contributions are welcomed.

## Installation

You can install the model using pip:

```bash
pip install pthflops
```
or directly from the github repository:
```bash
git clone https://github.com/1adrianb/pytorch-estimate-flops && cd pytorch-estimate-flops
python setup.py install
```

Note: pytorch 1.8 or newer is recommended.

## Example

```python
import torch
from torchvision.models import resnet18

from pthflops import count_ops

# Create a network and a corresponding input
device = 'cuda:0'
model = resnet18().to(device)
inp = torch.rand(1,3,224,224).to(device)

# Count the number of FLOPs
count_ops(model, inp)
```

Ignoring certain layers:

```python
import torch
from torch import nn
from pthflops import count_ops

class CustomLayer(nn.Module):
    def __init__(self):
        super(CustomLayer, self).__init__()
        self.conv1 = nn.Conv2d(5, 5, 1, 1, 0)
        # ... other layers present inside will also be ignored

    def forward(self, x):
        return self.conv1(x)

# Create a network and a corresponding input
inp = torch.rand(1,5,7,7)
net = nn.Sequential(
    nn.Conv2d(5, 5, 1, 1, 0),
    nn.ReLU(inplace=True),
    CustomLayer()
)

# Count the number of FLOPs, jit mode:
count_ops(net, inp, ignore_layers=['CustomLayer'])

# Note: if you are using python 1.8 or newer with fx instead of jit, the naming convention changed. As such, you will have to pass ['_2_conv1']
# Please check your model definition to account for this.
# Count the number of FLOPs, fx mode:
count_ops(net, inp, ignore_layers=['_2_conv1'])

```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/1adrianb/pytorch-estimate-flops",
    "name": "pthflops",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Adrian Bulat",
    "author_email": "adrian@adrianbulat.com",
    "download_url": "https://files.pythonhosted.org/packages/51/e9/610f95556b06a015e70e37bbeee80f8a57e87e5571c6be6c9901551532a1/pthflops-0.4.2.tar.gz",
    "platform": null,
    "description": "[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)  [![Test Pytorch Flops Counter](https://github.com/1adrianb/pytorch-estimate-flops/workflows/Test%20Pytorch%20Flops%20Counter/badge.svg)](https://travis-ci.com/1adrianb/pytorch-estimate-flops)\n[![PyPI](https://img.shields.io/pypi/v/pthflops.svg?style=flat)](https://pypi.org/project/pthflops/)\n\n# pytorch-estimate-flops\n\nSimple pytorch utility that estimates the number of FLOPs for a given network. For now only some basic operations are supported (basically the ones I needed for my models). More will be added soon.\n\nAll contributions are welcomed.\n\n## Installation\n\nYou can install the model using pip:\n\n```bash\npip install pthflops\n```\nor directly from the github repository:\n```bash\ngit clone https://github.com/1adrianb/pytorch-estimate-flops && cd pytorch-estimate-flops\npython setup.py install\n```\n\nNote: pytorch 1.8 or newer is recommended.\n\n## Example\n\n```python\nimport torch\nfrom torchvision.models import resnet18\n\nfrom pthflops import count_ops\n\n# Create a network and a corresponding input\ndevice = 'cuda:0'\nmodel = resnet18().to(device)\ninp = torch.rand(1,3,224,224).to(device)\n\n# Count the number of FLOPs\ncount_ops(model, inp)\n```\n\nIgnoring certain layers:\n\n```python\nimport torch\nfrom torch import nn\nfrom pthflops import count_ops\n\nclass CustomLayer(nn.Module):\n    def __init__(self):\n        super(CustomLayer, self).__init__()\n        self.conv1 = nn.Conv2d(5, 5, 1, 1, 0)\n        # ... other layers present inside will also be ignored\n\n    def forward(self, x):\n        return self.conv1(x)\n\n# Create a network and a corresponding input\ninp = torch.rand(1,5,7,7)\nnet = nn.Sequential(\n    nn.Conv2d(5, 5, 1, 1, 0),\n    nn.ReLU(inplace=True),\n    CustomLayer()\n)\n\n# Count the number of FLOPs, jit mode:\ncount_ops(net, inp, ignore_layers=['CustomLayer'])\n\n# Note: if you are using python 1.8 or newer with fx instead of jit, the naming convention changed. As such, you will have to pass ['_2_conv1']\n# Please check your model definition to account for this.\n# Count the number of FLOPs, fx mode:\ncount_ops(net, inp, ignore_layers=['_2_conv1'])\n\n```\n\n\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "Estimate FLOPs of neural networks",
    "version": "0.4.2",
    "project_urls": {
        "Homepage": "https://github.com/1adrianb/pytorch-estimate-flops"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0f747983544d6bc6ae37156c1b5a2b5de5ed886bbdeeda9e1eca84b5abd55cf",
                "md5": "b46ec23f9310e0c7c727027ed6fe69ba",
                "sha256": "8551ca3b10538cd6250b3cee8d42ced6c7cc3b955b57909feb849b95d59c45aa"
            },
            "downloads": -1,
            "filename": "pthflops-0.4.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b46ec23f9310e0c7c727027ed6fe69ba",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 11115,
            "upload_time": "2022-05-20T23:40:23",
            "upload_time_iso_8601": "2022-05-20T23:40:23.749488Z",
            "url": "https://files.pythonhosted.org/packages/a0/f7/47983544d6bc6ae37156c1b5a2b5de5ed886bbdeeda9e1eca84b5abd55cf/pthflops-0.4.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0c2783eab6b0a3068944d5e52cd64de9339fce58b2c8e33fec08bafa89843881",
                "md5": "298a671a1ecf4b0b7eafe04ede1ae5ca",
                "sha256": "7211664c4d47032c6859a84d14d8ce3ccd17ac08028389b92c8d66bf6ca2580c"
            },
            "downloads": -1,
            "filename": "pthflops-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "298a671a1ecf4b0b7eafe04ede1ae5ca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 11112,
            "upload_time": "2022-05-20T23:40:25",
            "upload_time_iso_8601": "2022-05-20T23:40:25.795320Z",
            "url": "https://files.pythonhosted.org/packages/0c/27/83eab6b0a3068944d5e52cd64de9339fce58b2c8e33fec08bafa89843881/pthflops-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "51e9610f95556b06a015e70e37bbeee80f8a57e87e5571c6be6c9901551532a1",
                "md5": "c0e226b78a267677a035bb57fc1a44d8",
                "sha256": "1a64b6d75937e01cf837e3cdc688de1e0fb58a7d6105974956c3bbeaa1c105e8"
            },
            "downloads": -1,
            "filename": "pthflops-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c0e226b78a267677a035bb57fc1a44d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10885,
            "upload_time": "2022-05-20T23:40:27",
            "upload_time_iso_8601": "2022-05-20T23:40:27.534094Z",
            "url": "https://files.pythonhosted.org/packages/51/e9/610f95556b06a015e70e37bbeee80f8a57e87e5571c6be6c9901551532a1/pthflops-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-05-20 23:40:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "1adrianb",
    "github_project": "pytorch-estimate-flops",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "pthflops"
}
        
Elapsed time: 0.49836s