puan


Namepuan JSON
Version 0.5.0 PyPI version JSON
download
home_page
SummaryTools for combinatorial optimization
upload_time2022-12-08 14:00:55
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords combinatorial optimization milp mllp ilp linear-programming optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<h1 align="center">
<img src="https://github.com/ourstudio-se/puan-python/blob/main/puan-logo.svg" width="350">
</h1>

<h4 align="center">A combinatorial optimization python package.</h4>

[![Documentation Status](https://readthedocs.org/projects/puan/badge/?version=latest)](https://puan.readthedocs.io/en/latest/?badge=latest)
[![Tested with Hypothesis](https://img.shields.io/badge/hypothesis-tested-brightgreen.svg)](https://hypothesis.readthedocs.io/)
### Install
```
pip install puan
```

### Usage
Given a predefined matrix, you construct a polyhedron as you would with a numpy array. Reduce its rows by following
```python
>>> import puan
>>> polyhedron = puan.ge_polyhedron([
    [ 0,-2, 1, 1],
    [ 0, 1, 1, 1]
])
>>> polyhedron.reduce(*polyhedron.reducable_rows_and_columns())
ge_polytope([[ 0, -2,  1,  1]])
```


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "puan",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "combinatorial optimization,milp,mllp,ilp,linear-programming,optimization",
    "author": "",
    "author_email": "Our Studio Void AB <moa@ourstudio.se>",
    "download_url": "https://files.pythonhosted.org/packages/d3/a0/2bb6f0a5544f175e2f16d818902963ef6066549be0e8b219e48e46b35076/puan-0.5.0.tar.gz",
    "platform": null,
    "description": "\n<h1 align=\"center\">\n<img src=\"https://github.com/ourstudio-se/puan-python/blob/main/puan-logo.svg\" width=\"350\">\n</h1>\n\n<h4 align=\"center\">A combinatorial optimization python package.</h4>\n\n[![Documentation Status](https://readthedocs.org/projects/puan/badge/?version=latest)](https://puan.readthedocs.io/en/latest/?badge=latest)\n[![Tested with Hypothesis](https://img.shields.io/badge/hypothesis-tested-brightgreen.svg)](https://hypothesis.readthedocs.io/)\n### Install\n```\npip install puan\n```\n\n### Usage\nGiven a predefined matrix, you construct a polyhedron as you would with a numpy array. Reduce its rows by following\n```python\n>>> import puan\n>>> polyhedron = puan.ge_polyhedron([\n    [ 0,-2, 1, 1],\n    [ 0, 1, 1, 1]\n])\n>>> polyhedron.reduce(*polyhedron.reducable_rows_and_columns())\nge_polytope([[ 0, -2,  1,  1]])\n```\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Tools for combinatorial optimization",
    "version": "0.5.0",
    "split_keywords": [
        "combinatorial optimization",
        "milp",
        "mllp",
        "ilp",
        "linear-programming",
        "optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "472559296328b346c9d1e62defd35448",
                "sha256": "90b2afb241ec9a27dedc45bbe8244e581f2d781737971dd71c1dab12b1d67a6d"
            },
            "downloads": -1,
            "filename": "puan-0.5.0-cp38-cp38-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "472559296328b346c9d1e62defd35448",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.8",
            "size": 46497,
            "upload_time": "2022-12-08T14:00:53",
            "upload_time_iso_8601": "2022-12-08T14:00:53.346404Z",
            "url": "https://files.pythonhosted.org/packages/68/5d/58819e48689b0a425967c1bc6eacceb0a59fa78d175b0fe5d6e6ea0218c8/puan-0.5.0-cp38-cp38-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "812bbfec846fa0df0a152ed8c23a267c",
                "sha256": "c75aad54e84cd0ef1d8c28987421609bff1567d1657fcc66c0eb6d788e6e3e52"
            },
            "downloads": -1,
            "filename": "puan-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "812bbfec846fa0df0a152ed8c23a267c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.8",
            "size": 46499,
            "upload_time": "2022-12-08T14:00:54",
            "upload_time_iso_8601": "2022-12-08T14:00:54.527497Z",
            "url": "https://files.pythonhosted.org/packages/b9/a7/644267e48f615142ba1f5565126586ec7a92e5ff65d88951809239909980/puan-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "6cb518ac8b7982f5f7ea056c6d4a2846",
                "sha256": "a8ba304bfa04c213a93ed8d248b31761a084d3d16703fb37bde1a9d583fb8f66"
            },
            "downloads": -1,
            "filename": "puan-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6cb518ac8b7982f5f7ea056c6d4a2846",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 41803,
            "upload_time": "2022-12-08T14:00:55",
            "upload_time_iso_8601": "2022-12-08T14:00:55.783792Z",
            "url": "https://files.pythonhosted.org/packages/d3/a0/2bb6f0a5544f175e2f16d818902963ef6066549be0e8b219e48e46b35076/puan-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-08 14:00:55",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "puan"
}
        
Elapsed time: 0.02483s