<h1 align="center">
<img src="https://github.com/ourstudio-se/puan-python/blob/main/puan-logo.svg" width="350">
</h1>
<h4 align="center">A combinatorial optimization python package.</h4>
[![Documentation Status](https://readthedocs.org/projects/puan/badge/?version=latest)](https://puan.readthedocs.io/en/latest/?badge=latest)
[![Tested with Hypothesis](https://img.shields.io/badge/hypothesis-tested-brightgreen.svg)](https://hypothesis.readthedocs.io/)
### Install
```
pip install puan
```
### Usage
Given a predefined matrix, you construct a polyhedron as you would with a numpy array. Reduce its rows by following
```python
>>> import puan
>>> polyhedron = puan.ge_polyhedron([
[ 0,-2, 1, 1],
[ 0, 1, 1, 1]
])
>>> polyhedron.reduce(*polyhedron.reducable_rows_and_columns())
ge_polytope([[ 0, -2, 1, 1]])
```
Raw data
{
"_id": null,
"home_page": "",
"name": "puan",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "combinatorial optimization,milp,mllp,ilp,linear-programming,optimization",
"author": "",
"author_email": "Our Studio Void AB <moa@ourstudio.se>",
"download_url": "https://files.pythonhosted.org/packages/d3/a0/2bb6f0a5544f175e2f16d818902963ef6066549be0e8b219e48e46b35076/puan-0.5.0.tar.gz",
"platform": null,
"description": "\n<h1 align=\"center\">\n<img src=\"https://github.com/ourstudio-se/puan-python/blob/main/puan-logo.svg\" width=\"350\">\n</h1>\n\n<h4 align=\"center\">A combinatorial optimization python package.</h4>\n\n[![Documentation Status](https://readthedocs.org/projects/puan/badge/?version=latest)](https://puan.readthedocs.io/en/latest/?badge=latest)\n[![Tested with Hypothesis](https://img.shields.io/badge/hypothesis-tested-brightgreen.svg)](https://hypothesis.readthedocs.io/)\n### Install\n```\npip install puan\n```\n\n### Usage\nGiven a predefined matrix, you construct a polyhedron as you would with a numpy array. Reduce its rows by following\n```python\n>>> import puan\n>>> polyhedron = puan.ge_polyhedron([\n [ 0,-2, 1, 1],\n [ 0, 1, 1, 1]\n])\n>>> polyhedron.reduce(*polyhedron.reducable_rows_and_columns())\nge_polytope([[ 0, -2, 1, 1]])\n```\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Tools for combinatorial optimization",
"version": "0.5.0",
"split_keywords": [
"combinatorial optimization",
"milp",
"mllp",
"ilp",
"linear-programming",
"optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "472559296328b346c9d1e62defd35448",
"sha256": "90b2afb241ec9a27dedc45bbe8244e581f2d781737971dd71c1dab12b1d67a6d"
},
"downloads": -1,
"filename": "puan-0.5.0-cp38-cp38-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "472559296328b346c9d1e62defd35448",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 46497,
"upload_time": "2022-12-08T14:00:53",
"upload_time_iso_8601": "2022-12-08T14:00:53.346404Z",
"url": "https://files.pythonhosted.org/packages/68/5d/58819e48689b0a425967c1bc6eacceb0a59fa78d175b0fe5d6e6ea0218c8/puan-0.5.0-cp38-cp38-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "812bbfec846fa0df0a152ed8c23a267c",
"sha256": "c75aad54e84cd0ef1d8c28987421609bff1567d1657fcc66c0eb6d788e6e3e52"
},
"downloads": -1,
"filename": "puan-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "812bbfec846fa0df0a152ed8c23a267c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 46499,
"upload_time": "2022-12-08T14:00:54",
"upload_time_iso_8601": "2022-12-08T14:00:54.527497Z",
"url": "https://files.pythonhosted.org/packages/b9/a7/644267e48f615142ba1f5565126586ec7a92e5ff65d88951809239909980/puan-0.5.0-cp39-cp39-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "6cb518ac8b7982f5f7ea056c6d4a2846",
"sha256": "a8ba304bfa04c213a93ed8d248b31761a084d3d16703fb37bde1a9d583fb8f66"
},
"downloads": -1,
"filename": "puan-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "6cb518ac8b7982f5f7ea056c6d4a2846",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 41803,
"upload_time": "2022-12-08T14:00:55",
"upload_time_iso_8601": "2022-12-08T14:00:55.783792Z",
"url": "https://files.pythonhosted.org/packages/d3/a0/2bb6f0a5544f175e2f16d818902963ef6066549be0e8b219e48e46b35076/puan-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-08 14:00:55",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "puan"
}