purnamatools


Namepurnamatools JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/PurnamaRidzkyN/purnamatools.git
SummaryPython package to simplify the initial stages of model building and analysis for data science projects
upload_time2025-08-30 11:50:10
maintainerNone
docs_urlNone
authorPurnama Ridzky Nugraha
requires_python>=3.8
licenseNone
keywords data-science machine-learning feature-selection model-analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PurnamaTools

**PurnamaTools** is a Python package designed to simplify data analysis and machine learning workflows, especially for beginners. It provides utilities for:

- Initial data inspection and validation
- Feature selection and correlation analysis
- Model evaluation for regression and classification

The package is intended to be continuously updated with new features and improvements.

## Features

### 1. Initial Data Check
- `initial_data_overview(df, target=None, is_classification=True)`: Comprehensive overview of your dataset, including missing values, duplicates, outliers, low variance columns, and more.
- `check_class_balance(df, target)`: Quickly check class imbalance and get recommendations for classification tasks.

### 2. Feature Selection
- `correlation_analysis(df, target, method='pearson')`: Identify strong correlations and potential redundant features.
- `mi_analysis(X, y)`: Select top features based on Mutual Information.
- `batch_rfe_feature_selection(X, y)`: Scalable Recursive Feature Elimination for datasets with many features.
- `sfs_feature_selection(X, y)`: Sequential Feature Selection (forward or backward) using any estimator.
- `lasso_feature_selection(X, y)`: Feature selection using Lasso regression.

### 3. Model Evaluation
- `evaluate_model_regression(model, X_train, y_train, X_test, y_test, scoring)`: Evaluate regression models and get guidance for overfitting or underfitting.
- `evaluate_model_classification(model, X_train, y_train, X_test, y_test, scoring)`: Evaluate classification models and get suggestions for handling class imbalance.

## Installation

```bash
pip install purnamatools

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PurnamaRidzkyN/purnamatools.git",
    "name": "purnamatools",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "data-science machine-learning feature-selection model-analysis",
    "author": "Purnama Ridzky Nugraha",
    "author_email": "purnamanugraha492@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/2d/45/f26fa59e0febf82932a94fcc21f0d9a9187f78750d0ee9fc2898aeb27184/purnamatools-0.2.1.tar.gz",
    "platform": null,
    "description": "# PurnamaTools\r\n\r\n**PurnamaTools** is a Python package designed to simplify data analysis and machine learning workflows, especially for beginners. It provides utilities for:\r\n\r\n- Initial data inspection and validation\r\n- Feature selection and correlation analysis\r\n- Model evaluation for regression and classification\r\n\r\nThe package is intended to be continuously updated with new features and improvements.\r\n\r\n## Features\r\n\r\n### 1. Initial Data Check\r\n- `initial_data_overview(df, target=None, is_classification=True)`: Comprehensive overview of your dataset, including missing values, duplicates, outliers, low variance columns, and more.\r\n- `check_class_balance(df, target)`: Quickly check class imbalance and get recommendations for classification tasks.\r\n\r\n### 2. Feature Selection\r\n- `correlation_analysis(df, target, method='pearson')`: Identify strong correlations and potential redundant features.\r\n- `mi_analysis(X, y)`: Select top features based on Mutual Information.\r\n- `batch_rfe_feature_selection(X, y)`: Scalable Recursive Feature Elimination for datasets with many features.\r\n- `sfs_feature_selection(X, y)`: Sequential Feature Selection (forward or backward) using any estimator.\r\n- `lasso_feature_selection(X, y)`: Feature selection using Lasso regression.\r\n\r\n### 3. Model Evaluation\r\n- `evaluate_model_regression(model, X_train, y_train, X_test, y_test, scoring)`: Evaluate regression models and get guidance for overfitting or underfitting.\r\n- `evaluate_model_classification(model, X_train, y_train, X_test, y_test, scoring)`: Evaluate classification models and get suggestions for handling class imbalance.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install purnamatools\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python package to simplify the initial stages of model building and analysis for data science projects",
    "version": "0.2.1",
    "project_urls": {
        "Homepage": "https://github.com/PurnamaRidzkyN/purnamatools.git"
    },
    "split_keywords": [
        "data-science",
        "machine-learning",
        "feature-selection",
        "model-analysis"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "38ee52d4e9d9677d0d1c4b2e5e60faab2e0d1ac0660c0ce56191478a9767f173",
                "md5": "47351c98d541dfd1a94a4e70dd40e299",
                "sha256": "a8d891a7a0915ea50ff847d2245520e596936265a68e9f1d1fbee67e8cee8d20"
            },
            "downloads": -1,
            "filename": "purnamatools-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "47351c98d541dfd1a94a4e70dd40e299",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 11932,
            "upload_time": "2025-08-30T11:50:08",
            "upload_time_iso_8601": "2025-08-30T11:50:08.911847Z",
            "url": "https://files.pythonhosted.org/packages/38/ee/52d4e9d9677d0d1c4b2e5e60faab2e0d1ac0660c0ce56191478a9767f173/purnamatools-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2d45f26fa59e0febf82932a94fcc21f0d9a9187f78750d0ee9fc2898aeb27184",
                "md5": "8a57b5b0dc7b9de7e659f38ea108789a",
                "sha256": "8664d0460e009f76e4fd886266ff64bc496f252c4dd68c951676f23931eb0643"
            },
            "downloads": -1,
            "filename": "purnamatools-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8a57b5b0dc7b9de7e659f38ea108789a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 11664,
            "upload_time": "2025-08-30T11:50:10",
            "upload_time_iso_8601": "2025-08-30T11:50:10.639194Z",
            "url": "https://files.pythonhosted.org/packages/2d/45/f26fa59e0febf82932a94fcc21f0d9a9187f78750d0ee9fc2898aeb27184/purnamatools-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-30 11:50:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PurnamaRidzkyN",
    "github_project": "purnamatools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "purnamatools"
}
        
Elapsed time: 0.55874s