# Cheetah Binding for Python
## Cheetah Speech-to-Text Engine
Made in Vancouver, Canada by [Picovoice](https://picovoice.ai)
Cheetah is an on-device streaming speech-to-text engine. Cheetah is:
- Private; All voice processing runs locally.
- [Accurate](https://picovoice.ai/docs/benchmark/stt/)
- [Compact and Computationally-Efficient](https://github.com/Picovoice/speech-to-text-benchmark#rtf)
- Cross-Platform:
- Linux (x86_64), macOS (x86_64, arm64), and Windows (x86_64)
- Android and iOS
- Chrome, Safari, Firefox, and Edge
- Raspberry Pi (3, 4, 5)
## Compatibility
- Python 3.8+
- Runs on Linux (x86_64), macOS (x86_64, arm64), Windows (x86_64), and Raspberry Pi (3, 4, 5).
## Installation
```console
pip3 install pvcheetah
```
## AccessKey
Cheetah requires a valid Picovoice `AccessKey` at initialization. `AccessKey` acts as your credentials when using Cheetah SDKs.
You can get your `AccessKey` for free. Make sure to keep your `AccessKey` secret.
Signup or Login to [Picovoice Console](https://console.picovoice.ai/) to get your `AccessKey`.
## Usage
Create an instance of the engine and transcribe audio:
```python
import pvcheetah
handle = pvcheetah.create(access_key='${ACCESS_KEY}')
def get_next_audio_frame():
pass
while True:
partial_transcript, is_endpoint = handle.process(get_next_audio_frame())
if is_endpoint:
final_transcript = handle.flush()
```
Replace `${ACCESS_KEY}` with yours obtained from [Picovoice Console](https://console.picovoice.ai/). When done be sure
to explicitly release the resources using `handle.delete()`.
### Language Model
The Cheetah Python SDK comes preloaded with a default English language model (`.pv` file).
Default models for other supported languages can be found in [lib/common](../../lib/common).
Create custom language models using the [Picovoice Console](https://console.picovoice.ai/). Here you can train
language models with custom vocabulary and boost words in the existing vocabulary.
Pass in the `.pv` file via the `model_path` argument:
```python
cheetah = pvcheetah.create(
access_key='${ACCESS_KEY}',
model_path='${MODEL_FILE_PATH}')
```
## Demos
[pvcheetahdemo](https://pypi.org/project/pvcheetahdemo/) provides command-line utilities for processing audio using
Cheetah.
Raw data
{
"_id": null,
"home_page": "https://github.com/Picovoice/cheetah",
"name": "pvcheetah",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "Speech-to-Text, Speech Recognition, Voice Recognition, ASR, Automatic Speech Recognition",
"author": "Picovoice",
"author_email": "hello@picovoice.ai",
"download_url": "https://files.pythonhosted.org/packages/03/4d/c07aefbce78d5ae164d115a611e9859e1e1f2ddfe259d59a1d38570e10b2/pvcheetah-2.1.0.tar.gz",
"platform": null,
"description": "# Cheetah Binding for Python\n\n## Cheetah Speech-to-Text Engine\n\nMade in Vancouver, Canada by [Picovoice](https://picovoice.ai)\n\nCheetah is an on-device streaming speech-to-text engine. Cheetah is:\n\n- Private; All voice processing runs locally.\n- [Accurate](https://picovoice.ai/docs/benchmark/stt/)\n- [Compact and Computationally-Efficient](https://github.com/Picovoice/speech-to-text-benchmark#rtf)\n- Cross-Platform:\n - Linux (x86_64), macOS (x86_64, arm64), and Windows (x86_64)\n - Android and iOS\n - Chrome, Safari, Firefox, and Edge\n - Raspberry Pi (3, 4, 5)\n\n## Compatibility\n\n- Python 3.8+\n- Runs on Linux (x86_64), macOS (x86_64, arm64), Windows (x86_64), and Raspberry Pi (3, 4, 5).\n\n## Installation\n\n```console\npip3 install pvcheetah\n```\n\n## AccessKey\n\nCheetah requires a valid Picovoice `AccessKey` at initialization. `AccessKey` acts as your credentials when using Cheetah SDKs.\nYou can get your `AccessKey` for free. Make sure to keep your `AccessKey` secret.\nSignup or Login to [Picovoice Console](https://console.picovoice.ai/) to get your `AccessKey`.\n\n## Usage\n\nCreate an instance of the engine and transcribe audio:\n\n```python\nimport pvcheetah\n\nhandle = pvcheetah.create(access_key='${ACCESS_KEY}')\n\ndef get_next_audio_frame():\n pass\n\nwhile True:\n partial_transcript, is_endpoint = handle.process(get_next_audio_frame())\n if is_endpoint:\n final_transcript = handle.flush()\n```\n\nReplace `${ACCESS_KEY}` with yours obtained from [Picovoice Console](https://console.picovoice.ai/). When done be sure\nto explicitly release the resources using `handle.delete()`.\n\n### Language Model\n\nThe Cheetah Python SDK comes preloaded with a default English language model (`.pv` file).\nDefault models for other supported languages can be found in [lib/common](../../lib/common).\n\nCreate custom language models using the [Picovoice Console](https://console.picovoice.ai/). Here you can train\nlanguage models with custom vocabulary and boost words in the existing vocabulary.\n\nPass in the `.pv` file via the `model_path` argument:\n```python\ncheetah = pvcheetah.create(\n access_key='${ACCESS_KEY}',\n model_path='${MODEL_FILE_PATH}')\n```\n\n## Demos\n\n[pvcheetahdemo](https://pypi.org/project/pvcheetahdemo/) provides command-line utilities for processing audio using\nCheetah.\n",
"bugtrack_url": null,
"license": null,
"summary": "Cheetah Speech-to-Text Engine.",
"version": "2.1.0",
"project_urls": {
"Homepage": "https://github.com/Picovoice/cheetah"
},
"split_keywords": [
"speech-to-text",
" speech recognition",
" voice recognition",
" asr",
" automatic speech recognition"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1c2dab53e3c0c930a566b0e886a4848231825e63c9f3df8274b74b859bdab81b",
"md5": "294d7d30b153848554769c114a3fc619",
"sha256": "ff8c9d85f2ed58e2ff7b4e6dae30ab73d1131bdcff1ba793749177b051c6feb9"
},
"downloads": -1,
"filename": "pvcheetah-2.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "294d7d30b153848554769c114a3fc619",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 29373136,
"upload_time": "2024-12-10T00:01:17",
"upload_time_iso_8601": "2024-12-10T00:01:17.268963Z",
"url": "https://files.pythonhosted.org/packages/1c/2d/ab53e3c0c930a566b0e886a4848231825e63c9f3df8274b74b859bdab81b/pvcheetah-2.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "034dc07aefbce78d5ae164d115a611e9859e1e1f2ddfe259d59a1d38570e10b2",
"md5": "c7344668f5c499a1f1398f5c316dd1f5",
"sha256": "a595874704b1d563f8e9824aec333cc38924f63b857d3b470ddb322fc294cf53"
},
"downloads": -1,
"filename": "pvcheetah-2.1.0.tar.gz",
"has_sig": false,
"md5_digest": "c7344668f5c499a1f1398f5c316dd1f5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 29365551,
"upload_time": "2024-12-10T00:01:22",
"upload_time_iso_8601": "2024-12-10T00:01:22.301629Z",
"url": "https://files.pythonhosted.org/packages/03/4d/c07aefbce78d5ae164d115a611e9859e1e1f2ddfe259d59a1d38570e10b2/pvcheetah-2.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-10 00:01:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Picovoice",
"github_project": "cheetah",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pvcheetah"
}