pvporcupine


Namepvporcupine JSON
Version 3.0.5 PyPI version JSON
download
home_pagehttps://github.com/Picovoice/porcupine
SummaryPorcupine wake word engine.
upload_time2025-02-05 18:37:33
maintainerNone
docs_urlNone
authorPicovoice
requires_python>=3.9
licenseNone
keywords wake word engine hotword detection keyword spotting wake word detection voice commands
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Porcupine Wake Word Engine

Made in Vancouver, Canada by [Picovoice](https://picovoice.ai)

Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled
applications. It is

- using deep neural networks trained in real-world environments.
- compact and computationally-efficient. It is perfect for IoT.
- cross-platform:
  - Arm Cortex-M, STM32, Arduino, and i.MX RT 
  - Raspberry Pi (Zero, 3, 4, 5)
  - Android and iOS
  - Chrome, Safari, Firefox, and Edge
  - Linux (x86_64), macOS (x86_64, arm64), and Windows (x86_64)
- scalable. It can detect multiple always-listening voice commands with no added runtime footprint.
- self-service. Developers can train custom wake word models using [Picovoice Console](https://console.picovoice.ai/).

## Compatibility

- Python 3.8+
- Runs on Linux (x86_64), macOS (x86_64 and arm64), Windows (x86_64, arm64), and Raspberry Pi (Zero, 3, 4, 5).

## Installation

```console
pip3 install pvporcupine
```

## AccessKey

Porcupine requires a valid Picovoice `AccessKey` at initialization. `AccessKey` acts as your credentials when using Porcupine SDKs.
You can get your `AccessKey` for free. Make sure to keep your `AccessKey` secret.
Signup or Login to [Picovoice Console](https://console.picovoice.ai/) to get your `AccessKey`.

## Usage

Create an instance of the engine

```python
import pvporcupine

access_key = "${ACCESS_KEY}" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)

handle = pvporcupine.create(access_key=access_key, keywords=['picovoice'])
```

`handle` is an instance of Porcupine that detects utterances of "Picovoice". `keywords` input argument is a shorthand
for accessing default keyword model files shipped with the package. The list of default keywords can be retrieved by

```python
import pvporcupine

print(pvporcupine.KEYWORDS)
```

Porcupine can detect multiple keywords concurrently

```python
import pvporcupine

access_key = "${ACCESS_KEY}" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)

handle = pvporcupine.create(access_key=access_key, keywords=['bumblebee', 'picovoice'])
```

To detect non-default keywords use `keyword_paths` input argument instead

```python
import pvporcupine

access_key = "${ACCESS_KEY}" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)
keyword_paths = ['/absolute/path/to/keyword/one', '/absolute/path/to/keyword/two', ...]

handle = pvporcupine.create(access_key=access_key, keyword_paths=keyword_paths)
```

The sensitivity of the engine can be tuned per keyword using the `sensitivities` input argument

```python
import pvporcupine

access_key = "${ACCESS_KEY}" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)

handle = pvporcupine.create(
        access_key=access_key,
        keywords=['grapefruit', 'porcupine'],
        sensitivities=[0.6, 0.35])
```

Sensitivity is the parameter that enables trading miss rate for the false alarm rate. It is a floating point number within
`[0, 1]`. A higher sensitivity reduces the miss rate at the cost of increased false alarm rate.

When initialized, the valid sample rate is given by `handle.sample_rate`. Expected frame length (number of audio samples
in an input array) is `handle.frame_length`. The engine accepts 16-bit linearly-encoded PCM and operates on
single-channel audio.

```python
def get_next_audio_frame():
    pass

while True:
    keyword_index = handle.process(get_next_audio_frame())
    if keyword_index >= 0:
        # detection event logic/callback
        pass
```

When done resources have to be released explicitly

```python
handle.delete()
```

## Non-English Wake Words

In order to detect non-English wake words you need to use the corresponding model file. The model files for all supported languages are available [here](https://github.com/Picovoice/porcupine/tree/master/lib/common).

## Demos

[pvporcupinedemo](https://pypi.org/project/pvporcupinedemo/) provides command-line utilities for processing real-time
audio (i.e. microphone) and files using Porcupine.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Picovoice/porcupine",
    "name": "pvporcupine",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "wake word engine, hotword detection, keyword spotting, wake word detection, voice commands",
    "author": "Picovoice",
    "author_email": "hello@picovoice.ai",
    "download_url": "https://files.pythonhosted.org/packages/f8/ac/14c64255c08db0b80315ccc940943fad5fea03f0006b09b45f0b83ced08d/pvporcupine-3.0.5.tar.gz",
    "platform": null,
    "description": "# Porcupine Wake Word Engine\n\nMade in Vancouver, Canada by [Picovoice](https://picovoice.ai)\n\nPorcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled\napplications. It is\n\n- using deep neural networks trained in real-world environments.\n- compact and computationally-efficient. It is perfect for IoT.\n- cross-platform:\n  - Arm Cortex-M, STM32, Arduino, and i.MX RT \n  - Raspberry Pi (Zero, 3, 4, 5)\n  - Android and iOS\n  - Chrome, Safari, Firefox, and Edge\n  - Linux (x86_64), macOS (x86_64, arm64), and Windows (x86_64)\n- scalable. It can detect multiple always-listening voice commands with no added runtime footprint.\n- self-service. Developers can train custom wake word models using [Picovoice Console](https://console.picovoice.ai/).\n\n## Compatibility\n\n- Python 3.8+\n- Runs on Linux (x86_64), macOS (x86_64 and arm64), Windows (x86_64, arm64), and Raspberry Pi (Zero, 3, 4, 5).\n\n## Installation\n\n```console\npip3 install pvporcupine\n```\n\n## AccessKey\n\nPorcupine requires a valid Picovoice `AccessKey` at initialization. `AccessKey` acts as your credentials when using Porcupine SDKs.\nYou can get your `AccessKey` for free. Make sure to keep your `AccessKey` secret.\nSignup or Login to [Picovoice Console](https://console.picovoice.ai/) to get your `AccessKey`.\n\n## Usage\n\nCreate an instance of the engine\n\n```python\nimport pvporcupine\n\naccess_key = \"${ACCESS_KEY}\" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)\n\nhandle = pvporcupine.create(access_key=access_key, keywords=['picovoice'])\n```\n\n`handle` is an instance of Porcupine that detects utterances of \"Picovoice\". `keywords` input argument is a shorthand\nfor accessing default keyword model files shipped with the package. The list of default keywords can be retrieved by\n\n```python\nimport pvporcupine\n\nprint(pvporcupine.KEYWORDS)\n```\n\nPorcupine can detect multiple keywords concurrently\n\n```python\nimport pvporcupine\n\naccess_key = \"${ACCESS_KEY}\" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)\n\nhandle = pvporcupine.create(access_key=access_key, keywords=['bumblebee', 'picovoice'])\n```\n\nTo detect non-default keywords use `keyword_paths` input argument instead\n\n```python\nimport pvporcupine\n\naccess_key = \"${ACCESS_KEY}\" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)\nkeyword_paths = ['/absolute/path/to/keyword/one', '/absolute/path/to/keyword/two', ...]\n\nhandle = pvporcupine.create(access_key=access_key, keyword_paths=keyword_paths)\n```\n\nThe sensitivity of the engine can be tuned per keyword using the `sensitivities` input argument\n\n```python\nimport pvporcupine\n\naccess_key = \"${ACCESS_KEY}\" # AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)\n\nhandle = pvporcupine.create(\n        access_key=access_key,\n        keywords=['grapefruit', 'porcupine'],\n        sensitivities=[0.6, 0.35])\n```\n\nSensitivity is the parameter that enables trading miss rate for the false alarm rate. It is a floating point number within\n`[0, 1]`. A higher sensitivity reduces the miss rate at the cost of increased false alarm rate.\n\nWhen initialized, the valid sample rate is given by `handle.sample_rate`. Expected frame length (number of audio samples\nin an input array) is `handle.frame_length`. The engine accepts 16-bit linearly-encoded PCM and operates on\nsingle-channel audio.\n\n```python\ndef get_next_audio_frame():\n    pass\n\nwhile True:\n    keyword_index = handle.process(get_next_audio_frame())\n    if keyword_index >= 0:\n        # detection event logic/callback\n        pass\n```\n\nWhen done resources have to be released explicitly\n\n```python\nhandle.delete()\n```\n\n## Non-English Wake Words\n\nIn order to detect non-English wake words you need to use the corresponding model file. The model files for all supported languages are available [here](https://github.com/Picovoice/porcupine/tree/master/lib/common).\n\n## Demos\n\n[pvporcupinedemo](https://pypi.org/project/pvporcupinedemo/) provides command-line utilities for processing real-time\naudio (i.e. microphone) and files using Porcupine.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Porcupine wake word engine.",
    "version": "3.0.5",
    "project_urls": {
        "Homepage": "https://github.com/Picovoice/porcupine"
    },
    "split_keywords": [
        "wake word engine",
        " hotword detection",
        " keyword spotting",
        " wake word detection",
        " voice commands"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c49e4716d4737a4a6a3de306c97f3cd6040e66ef23ad8b6b8fca80190dbcc3ad",
                "md5": "add1dc3f9cb68eebedc1c95083eac3d1",
                "sha256": "b80b31a38b1a622e492e19683f60efdcddd1662204830fcad50df90f01723356"
            },
            "downloads": -1,
            "filename": "pvporcupine-3.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "add1dc3f9cb68eebedc1c95083eac3d1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 2544202,
            "upload_time": "2025-02-05T18:37:30",
            "upload_time_iso_8601": "2025-02-05T18:37:30.898322Z",
            "url": "https://files.pythonhosted.org/packages/c4/9e/4716d4737a4a6a3de306c97f3cd6040e66ef23ad8b6b8fca80190dbcc3ad/pvporcupine-3.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f8ac14c64255c08db0b80315ccc940943fad5fea03f0006b09b45f0b83ced08d",
                "md5": "2ba4e56ebe876980b90028d75f858f24",
                "sha256": "48f92ab10a904b811e69afb18175d2bd4857ccec8be094f42449961a80fa2af1"
            },
            "downloads": -1,
            "filename": "pvporcupine-3.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "2ba4e56ebe876980b90028d75f858f24",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 2535302,
            "upload_time": "2025-02-05T18:37:33",
            "upload_time_iso_8601": "2025-02-05T18:37:33.808984Z",
            "url": "https://files.pythonhosted.org/packages/f8/ac/14c64255c08db0b80315ccc940943fad5fea03f0006b09b45f0b83ced08d/pvporcupine-3.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-05 18:37:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Picovoice",
    "github_project": "porcupine",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pvporcupine"
}
        
Elapsed time: 0.39728s