pxwebpy


Namepxwebpy JSON
Version 0.3.2 PyPI version JSON
download
home_pageNone
SummaryGet data from PxWeb API easily.
upload_time2024-09-15 15:06:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords dataframes pandas polars pxweb statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pxwebpy
[![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/stefur/pxwebpy/ci.yml?style=flat-square&label=ci)](https://github.com/stefur/pxwebpy/actions/workflows/ci.yml)
![PyPI - Version](https://img.shields.io/pypi/v/pxwebpy?style=flat-square)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pxwebpy?style=flat-square)
[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json&style=flat-square)](https://github.com/astral-sh/uv)
[![ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json&style=flat-square)](https://github.com/astral-sh/ruff)   
Easily get data from the PxWeb API and into either a polars or pandas dataframe.  
  
Pxwebpy parses the PxWeb table data as well as metadata using the json-stat2 response format. 
  
It has been tested with [Statistics Sweden](https://scb.se), [Statistics Finland](https://www.stat.fi), [Statistics Greenland](https://stat.gl) and [Statistics Norway](https://www.ssb.no).  

## Example usage
```python
>>> from pxwebpy.table import PxTable
>>> import pandas as pd

# Create a table object, setting up a URL for a table
>>> tbl = PxTable(url="https://api.scb.se/OV0104/v1/doris/sv/ssd/START/HE/HE0110/HE0110A/SamForvInk1")

# Check out the table variables that we can use
>>> tbl.get_table_variables()
{'region': ['Riket',
  'Stockholms län',
  'Upplands Väsby',
  'Vallentuna',
...
  'Piteå',
  'Haparanda',
  'Kiruna'],
 'kön': ['män', 'kvinnor', 'totalt'],
 'ålder': ['totalt 16+ år',
  '16-19 år',
  'totalt 20+ år',
  '20-64 år',
  '65+ år',
  '20-24 år',
  '25-29 år',
...
  '75-79 år',
  '80-84 år',
  '85+ år'],
 'inkomstklass': ['totalt',
  '0',
  '1-19 tkr',
  '20-39 tkr',
...
  '600-799 tkr',
  '800-999 tkr',
  '1000+ tkr'],
 'tabellinnehåll': ['Medelinkomst, tkr',
  'Medianinkomst, tkr',
  'Totalsumma, mnkr',
  'Antal personer'],
 'år': ['1999',
  '2000',
...
  '2021',
  '2022']}

# Construct a query using a selection of variables we're interested in
>>> tbl.create_query({"tabellinnehåll": ["Medianinkomst, tkr"], "ålder": ["totalt 16+ år"]})

# Now we can get the data
>>> tbl.get_data()

>>> tbl

PxTable(url='https://api.scb.se/OV0104/v1/doris/sv/ssd/START/HE/HE0110/HE0110A/SamForvInk1',
        query={'query': [{'code': 'ContentsCode', 'selection': {'filter': 'item', 'values': ['HE0110J8']}}, {'code': 'Alder', 'selection': {'filter': 'item', 'values': ['tot16+']}}], 'response': {'format': 'json-stat2'}},
        metadata={'label': 'Sammanräknad förvärvsinkomst, medianinkomst för boende i Sverige hela året, tkr efter ålder, tabellinnehåll och år', 'note': None, 'source': 'SCB', 'updated': '2024-01-12T05:52:00Z'},
        fetched=2024-06-16 10:30:34.085020,
        dataset=[{'ålder': 'totalt 16+ år', 'tabellinnehåll': 'Medianinkomst, tkr', 'år': '1999', 'value': 159.4}, {'ålder': 'totalt 16+ år', 'tabellinnehåll': 'Medianinkomst, tkr', 'år': '2000', 'value': 165.3}, ...])

# Using the dataset we can then create a Pandas dataframe
>>> df = pd.DataFrame(tbl.dataset)
>>> print(df)

          ålder      tabellinnehåll    år  value
0   totalt 16+ år  Medianinkomst, tkr  1999  159.4
1   totalt 16+ år  Medianinkomst, tkr  2000  165.3
2   totalt 16+ år  Medianinkomst, tkr  2001  172.4
3   totalt 16+ år  Medianinkomst, tkr  2002  179.4
4   totalt 16+ år  Medianinkomst, tkr  2003  185.1
5   totalt 16+ år  Medianinkomst, tkr  2004  189.4
6   totalt 16+ år  Medianinkomst, tkr  2005  192.9
7   totalt 16+ år  Medianinkomst, tkr  2006  198.8
8   totalt 16+ år  Medianinkomst, tkr  2007  206.2
9   totalt 16+ år  Medianinkomst, tkr  2008  215.1
10  totalt 16+ år  Medianinkomst, tkr  2009  218.7
11  totalt 16+ år  Medianinkomst, tkr  2010  219.7
12  totalt 16+ år  Medianinkomst, tkr  2011  225.0
13  totalt 16+ år  Medianinkomst, tkr  2012  233.7
14  totalt 16+ år  Medianinkomst, tkr  2013  240.5
15  totalt 16+ år  Medianinkomst, tkr  2014  244.8
16  totalt 16+ år  Medianinkomst, tkr  2015  253.7
17  totalt 16+ år  Medianinkomst, tkr  2016  263.9
18  totalt 16+ år  Medianinkomst, tkr  2017  272.0
19  totalt 16+ år  Medianinkomst, tkr  2018  279.8
20  totalt 16+ år  Medianinkomst, tkr  2019  286.8
21  totalt 16+ år  Medianinkomst, tkr  2020  291.9
22  totalt 16+ år  Medianinkomst, tkr  2021  301.5
23  totalt 16+ år  Medianinkomst, tkr  2022  316.6
```

See [examples](examples/example.py) for more details on how to use pxwebpy.
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pxwebpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "dataframes, pandas, polars, pxweb, statistics",
    "author": null,
    "author_email": "stefur <stefan@furne.net>",
    "download_url": "https://files.pythonhosted.org/packages/88/98/4a8ebfd94450cbc5e742d727bbbfdee108be7806b59828f1d25276d4e9c4/pxwebpy-0.3.2.tar.gz",
    "platform": null,
    "description": "# pxwebpy\n[![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/stefur/pxwebpy/ci.yml?style=flat-square&label=ci)](https://github.com/stefur/pxwebpy/actions/workflows/ci.yml)\n![PyPI - Version](https://img.shields.io/pypi/v/pxwebpy?style=flat-square)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pxwebpy?style=flat-square)\n[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json&style=flat-square)](https://github.com/astral-sh/uv)\n[![ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json&style=flat-square)](https://github.com/astral-sh/ruff)   \nEasily get data from the PxWeb API and into either a polars or pandas dataframe.  \n  \nPxwebpy parses the PxWeb table data as well as metadata using the json-stat2 response format. \n  \nIt has been tested with [Statistics Sweden](https://scb.se), [Statistics Finland](https://www.stat.fi), [Statistics Greenland](https://stat.gl) and [Statistics Norway](https://www.ssb.no).  \n\n## Example usage\n```python\n>>> from pxwebpy.table import PxTable\n>>> import pandas as pd\n\n# Create a table object, setting up a URL for a table\n>>> tbl = PxTable(url=\"https://api.scb.se/OV0104/v1/doris/sv/ssd/START/HE/HE0110/HE0110A/SamForvInk1\")\n\n# Check out the table variables that we can use\n>>> tbl.get_table_variables()\n{'region': ['Riket',\n  'Stockholms l\u00e4n',\n  'Upplands V\u00e4sby',\n  'Vallentuna',\n...\n  'Pite\u00e5',\n  'Haparanda',\n  'Kiruna'],\n 'k\u00f6n': ['m\u00e4n', 'kvinnor', 'totalt'],\n '\u00e5lder': ['totalt 16+ \u00e5r',\n  '16-19 \u00e5r',\n  'totalt 20+ \u00e5r',\n  '20-64 \u00e5r',\n  '65+ \u00e5r',\n  '20-24 \u00e5r',\n  '25-29 \u00e5r',\n...\n  '75-79 \u00e5r',\n  '80-84 \u00e5r',\n  '85+ \u00e5r'],\n 'inkomstklass': ['totalt',\n  '0',\n  '1-19 tkr',\n  '20-39 tkr',\n...\n  '600-799 tkr',\n  '800-999 tkr',\n  '1000+ tkr'],\n 'tabellinneh\u00e5ll': ['Medelinkomst, tkr',\n  'Medianinkomst, tkr',\n  'Totalsumma, mnkr',\n  'Antal personer'],\n '\u00e5r': ['1999',\n  '2000',\n...\n  '2021',\n  '2022']}\n\n# Construct a query using a selection of variables we're interested in\n>>> tbl.create_query({\"tabellinneh\u00e5ll\": [\"Medianinkomst, tkr\"], \"\u00e5lder\": [\"totalt 16+ \u00e5r\"]})\n\n# Now we can get the data\n>>> tbl.get_data()\n\n>>> tbl\n\nPxTable(url='https://api.scb.se/OV0104/v1/doris/sv/ssd/START/HE/HE0110/HE0110A/SamForvInk1',\n        query={'query': [{'code': 'ContentsCode', 'selection': {'filter': 'item', 'values': ['HE0110J8']}}, {'code': 'Alder', 'selection': {'filter': 'item', 'values': ['tot16+']}}], 'response': {'format': 'json-stat2'}},\n        metadata={'label': 'Sammanr\u00e4knad f\u00f6rv\u00e4rvsinkomst, medianinkomst f\u00f6r boende i Sverige hela \u00e5ret, tkr efter \u00e5lder, tabellinneh\u00e5ll och \u00e5r', 'note': None, 'source': 'SCB', 'updated': '2024-01-12T05:52:00Z'},\n        fetched=2024-06-16 10:30:34.085020,\n        dataset=[{'\u00e5lder': 'totalt 16+ \u00e5r', 'tabellinneh\u00e5ll': 'Medianinkomst, tkr', '\u00e5r': '1999', 'value': 159.4}, {'\u00e5lder': 'totalt 16+ \u00e5r', 'tabellinneh\u00e5ll': 'Medianinkomst, tkr', '\u00e5r': '2000', 'value': 165.3}, ...])\n\n# Using the dataset we can then create a Pandas dataframe\n>>> df = pd.DataFrame(tbl.dataset)\n>>> print(df)\n\n          \u00e5lder      tabellinneh\u00e5ll    \u00e5r  value\n0   totalt 16+ \u00e5r  Medianinkomst, tkr  1999  159.4\n1   totalt 16+ \u00e5r  Medianinkomst, tkr  2000  165.3\n2   totalt 16+ \u00e5r  Medianinkomst, tkr  2001  172.4\n3   totalt 16+ \u00e5r  Medianinkomst, tkr  2002  179.4\n4   totalt 16+ \u00e5r  Medianinkomst, tkr  2003  185.1\n5   totalt 16+ \u00e5r  Medianinkomst, tkr  2004  189.4\n6   totalt 16+ \u00e5r  Medianinkomst, tkr  2005  192.9\n7   totalt 16+ \u00e5r  Medianinkomst, tkr  2006  198.8\n8   totalt 16+ \u00e5r  Medianinkomst, tkr  2007  206.2\n9   totalt 16+ \u00e5r  Medianinkomst, tkr  2008  215.1\n10  totalt 16+ \u00e5r  Medianinkomst, tkr  2009  218.7\n11  totalt 16+ \u00e5r  Medianinkomst, tkr  2010  219.7\n12  totalt 16+ \u00e5r  Medianinkomst, tkr  2011  225.0\n13  totalt 16+ \u00e5r  Medianinkomst, tkr  2012  233.7\n14  totalt 16+ \u00e5r  Medianinkomst, tkr  2013  240.5\n15  totalt 16+ \u00e5r  Medianinkomst, tkr  2014  244.8\n16  totalt 16+ \u00e5r  Medianinkomst, tkr  2015  253.7\n17  totalt 16+ \u00e5r  Medianinkomst, tkr  2016  263.9\n18  totalt 16+ \u00e5r  Medianinkomst, tkr  2017  272.0\n19  totalt 16+ \u00e5r  Medianinkomst, tkr  2018  279.8\n20  totalt 16+ \u00e5r  Medianinkomst, tkr  2019  286.8\n21  totalt 16+ \u00e5r  Medianinkomst, tkr  2020  291.9\n22  totalt 16+ \u00e5r  Medianinkomst, tkr  2021  301.5\n23  totalt 16+ \u00e5r  Medianinkomst, tkr  2022  316.6\n```\n\nSee [examples](examples/example.py) for more details on how to use pxwebpy.",
    "bugtrack_url": null,
    "license": null,
    "summary": "Get data from PxWeb API easily.",
    "version": "0.3.2",
    "project_urls": {
        "Repository": "https://github.com/stefur/pxwebpy"
    },
    "split_keywords": [
        "dataframes",
        " pandas",
        " polars",
        " pxweb",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "337bc5b6e99c94f0ffc774c867832a170750237ebf5105c19f04d240a329a9c4",
                "md5": "18c66f0bba493b280c93f793e7b926c8",
                "sha256": "c08a995db50baaf815ad5ded0978ae756f298c9bcf551fd7b917b4dccf884063"
            },
            "downloads": -1,
            "filename": "pxwebpy-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "18c66f0bba493b280c93f793e7b926c8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 7402,
            "upload_time": "2024-09-15T15:06:45",
            "upload_time_iso_8601": "2024-09-15T15:06:45.641318Z",
            "url": "https://files.pythonhosted.org/packages/33/7b/c5b6e99c94f0ffc774c867832a170750237ebf5105c19f04d240a329a9c4/pxwebpy-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "88984a8ebfd94450cbc5e742d727bbbfdee108be7806b59828f1d25276d4e9c4",
                "md5": "78b8bfcd1e7ac831e33df4aef6aae18a",
                "sha256": "1c7ccc9163a63a106ea01e48a8769bc8e7feacaeaba6aa69803354f5e02629e7"
            },
            "downloads": -1,
            "filename": "pxwebpy-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "78b8bfcd1e7ac831e33df4aef6aae18a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 63032,
            "upload_time": "2024-09-15T15:06:47",
            "upload_time_iso_8601": "2024-09-15T15:06:47.107123Z",
            "url": "https://files.pythonhosted.org/packages/88/98/4a8ebfd94450cbc5e742d727bbbfdee108be7806b59828f1d25276d4e9c4/pxwebpy-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-15 15:06:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "stefur",
    "github_project": "pxwebpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pxwebpy"
}
        
Elapsed time: 0.32456s