<!-- # TGX -->
![TGX logo](docs/2023_TGX_logo.png)
# Temporal Graph Analysis with TGX
<h4>
<a href="https://arxiv.org/abs/2402.03651"><img src="https://img.shields.io/badge/arXiv-pdf-yellowgreen"></a>
<a href="https://pypi.org/project/py-tgx/"><img src="https://img.shields.io/pypi/v/py-tgx.svg?color=brightgreen"></a>
<a href="https://complexdata-mila.github.io/TGX/"><img src="https://img.shields.io/badge/docs-orange"></a>
</h4>
This repository contains the code for the paper "Temporal Graph Analysis with TGX" (WSDM 2024, Demo Track).
TGX overview:
- TGX supports all datasets from [TGB](https://tgb.complexdatalab.com/) and [Poursafaei et al. 2022](https://openreview.net/forum?id=1GVpwr2Tfdg) as well as any custom dataset in `.csv` format.
- TGX provides numerous temporal graph visualization plots and statistics out of the box.
## Dependecies
TGX implementation works with `python >= 3.9` and can be installed as follows.
1. Set up virtual environment (conda should work as well).
```
python -m venv tgx_env/
source tgx_env/bin/activate
```
2. Upgrade pip (Optional)
```
pip install --upgrade pip
```
3. Install external packages
```
pip install -r requirements.txt
```
4. Install local dependencies under root directory `/TGX`.
```
pip install -e .
```
5. [Aternative] Install TGX from [`PyPi`](https://pypi.org/project/py-tgx/):
```
pip install py-tgx
```
6. [optional] Install `mkdocs` dependencies to serve the documentation locally.
```
pip install mkdocs-glightbox
```
For tutorials on how to use TGX to generate visualizations and compute statistics for temporal graphs, see [`docs/tutorials/data_viz_stats.ipynb`](https://github.com/ComplexData-MILA/TGX/blob/master/docs/tutorials/data_viz_stats.ipynb)
### Citation
If TGX is useful for your work, please consider citing it:
```bibtex
@article{shirzadkhani2024temporal,
title={Temporal Graph Analysis with TGX},
author={Shirzadkhani, Razieh and Huang, Shenyang and Kooshafar, Elahe and Rabbany, Reihaneh and Poursafaei, Farimah},
journal={arXiv preprint arXiv:2402.03651},
year={2024}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/ComplexData-MILA/TGX",
"name": "py-tgx",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "Temporal Graph Visualization",
"author": "[\"Razieh Shirzadkhani <razieh.shirzadkhani@gmail.com>\", \"shenyang Huang <shenyang.huang@mail.mcgill.ca>\", \"Elahe Kooshafar\", \"Farimah Poursafaei\"]",
"author_email": "razieh.shirzadkhani@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c0/0f/a45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1/py-tgx-0.4.0.tar.gz",
"platform": null,
"description": "<!-- # TGX -->\n![TGX logo](docs/2023_TGX_logo.png)\n\n# Temporal Graph Analysis with TGX\n<h4>\n\t<a href=\"https://arxiv.org/abs/2402.03651\"><img src=\"https://img.shields.io/badge/arXiv-pdf-yellowgreen\"></a>\n\t<a href=\"https://pypi.org/project/py-tgx/\"><img src=\"https://img.shields.io/pypi/v/py-tgx.svg?color=brightgreen\"></a>\n\t<a href=\"https://complexdata-mila.github.io/TGX/\"><img src=\"https://img.shields.io/badge/docs-orange\"></a>\n</h4> \n\nThis repository contains the code for the paper \"Temporal Graph Analysis with TGX\" (WSDM 2024, Demo Track).\n\nTGX overview:\n- TGX supports all datasets from [TGB](https://tgb.complexdatalab.com/) and [Poursafaei et al. 2022](https://openreview.net/forum?id=1GVpwr2Tfdg) as well as any custom dataset in `.csv` format. \n- TGX provides numerous temporal graph visualization plots and statistics out of the box.\n\n\n## Dependecies\nTGX implementation works with `python >= 3.9` and can be installed as follows.\n\n1. Set up virtual environment (conda should work as well).\n\t```\n\tpython -m venv tgx_env/\n\tsource tgx_env/bin/activate\n\t```\n\n2. Upgrade pip (Optional)\n\t```\n\tpip install --upgrade pip\n\t```\n\n3. Install external packages\n\t```\n\tpip install -r requirements.txt\n\t```\n\n4. Install local dependencies under root directory `/TGX`.\n\t```\n\tpip install -e .\n\t```\n\n5. [Aternative] Install TGX from [`PyPi`](https://pypi.org/project/py-tgx/):\n\n\t```\n\tpip install py-tgx\n\t```\n\n6. [optional] Install `mkdocs` dependencies to serve the documentation locally.\n\t```\n\tpip install mkdocs-glightbox\n\t```\n\n\nFor tutorials on how to use TGX to generate visualizations and compute statistics for temporal graphs, see [`docs/tutorials/data_viz_stats.ipynb`](https://github.com/ComplexData-MILA/TGX/blob/master/docs/tutorials/data_viz_stats.ipynb)\n\n\n### Citation\nIf TGX is useful for your work, please consider citing it:\n```bibtex\n@article{shirzadkhani2024temporal,\n title={Temporal Graph Analysis with TGX},\n author={Shirzadkhani, Razieh and Huang, Shenyang and Kooshafar, Elahe and Rabbany, Reihaneh and Poursafaei, Farimah},\n journal={arXiv preprint arXiv:2402.03651},\n year={2024}\n}\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Temporal Graph Visualization with TGX",
"version": "0.4.0",
"project_urls": {
"Bug Tracker": "https://github.com/fpour/TGX/issues",
"Homepage": "https://github.com/ComplexData-MILA/TGX"
},
"split_keywords": [
"temporal",
"graph",
"visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e486c1000cdf8efb21dd354898a466bd75f77f26f8e6cff410cb82658573bd37",
"md5": "ea2ecb983799be9d82bd3d7dd3bae73d",
"sha256": "240019992344edcc88c12198882fcb217b57c783e5ca7dcbff25d66ff2290ed8"
},
"downloads": -1,
"filename": "py_tgx-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ea2ecb983799be9d82bd3d7dd3bae73d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 27361,
"upload_time": "2024-02-20T17:46:37",
"upload_time_iso_8601": "2024-02-20T17:46:37.257489Z",
"url": "https://files.pythonhosted.org/packages/e4/86/c1000cdf8efb21dd354898a466bd75f77f26f8e6cff410cb82658573bd37/py_tgx-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c00fa45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1",
"md5": "84ca7800dde145a2ebd5cefc1efcce0d",
"sha256": "a31f92b78b1eade1a832741f8d8335201feeeaa8149df03e4983d76d8456df1f"
},
"downloads": -1,
"filename": "py-tgx-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "84ca7800dde145a2ebd5cefc1efcce0d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 23117,
"upload_time": "2024-02-20T17:46:38",
"upload_time_iso_8601": "2024-02-20T17:46:38.421905Z",
"url": "https://files.pythonhosted.org/packages/c0/0f/a45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1/py-tgx-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-20 17:46:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ComplexData-MILA",
"github_project": "TGX",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "py-tgx"
}