py-tgx


Namepy-tgx JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/ComplexData-MILA/TGX
SummaryTemporal Graph Visualization with TGX
upload_time2024-02-20 17:46:38
maintainer
docs_urlNone
author["Razieh Shirzadkhani <razieh.shirzadkhani@gmail.com>", "shenyang Huang <shenyang.huang@mail.mcgill.ca>", "Elahe Kooshafar", "Farimah Poursafaei"]
requires_python>=3.6
licenseMIT
keywords temporal graph visualization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- # TGX -->
![TGX logo](docs/2023_TGX_logo.png)

# Temporal Graph Analysis with TGX
<h4>
	<a href="https://arxiv.org/abs/2402.03651"><img src="https://img.shields.io/badge/arXiv-pdf-yellowgreen"></a>
	<a href="https://pypi.org/project/py-tgx/"><img src="https://img.shields.io/pypi/v/py-tgx.svg?color=brightgreen"></a>
	<a href="https://complexdata-mila.github.io/TGX/"><img src="https://img.shields.io/badge/docs-orange"></a>
</h4> 

This repository contains the code for the paper "Temporal Graph Analysis with TGX" (WSDM 2024, Demo Track).

TGX overview:
- TGX supports all datasets from [TGB](https://tgb.complexdatalab.com/) and [Poursafaei et al. 2022](https://openreview.net/forum?id=1GVpwr2Tfdg) as well as any custom dataset in `.csv` format. 
- TGX provides numerous temporal graph visualization plots and statistics out of the box.


## Dependecies
TGX implementation works with `python >= 3.9` and can be installed as follows.

1. Set up virtual environment (conda should work as well).
	```
	python -m venv tgx_env/
	source tgx_env/bin/activate
	```

2. Upgrade pip (Optional)
	```
	pip install --upgrade pip
	```

3. Install external packages
	```
	pip install -r requirements.txt
	```

4. Install local dependencies under root directory `/TGX`.
	```
	pip install -e .
	```

5. [Aternative] Install TGX from [`PyPi`](https://pypi.org/project/py-tgx/):

	```
	pip install py-tgx
	```

6. [optional] Install `mkdocs` dependencies to serve the documentation locally.
	```
	pip install mkdocs-glightbox
	```


For tutorials on how to use TGX to generate visualizations and compute statistics for temporal graphs, see [`docs/tutorials/data_viz_stats.ipynb`](https://github.com/ComplexData-MILA/TGX/blob/master/docs/tutorials/data_viz_stats.ipynb)


### Citation
If TGX is useful for your work, please consider citing it:
```bibtex
@article{shirzadkhani2024temporal,
  title={Temporal Graph Analysis with TGX},
  author={Shirzadkhani, Razieh and Huang, Shenyang and Kooshafar, Elahe and Rabbany, Reihaneh and Poursafaei, Farimah},
  journal={arXiv preprint arXiv:2402.03651},
  year={2024}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ComplexData-MILA/TGX",
    "name": "py-tgx",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Temporal Graph Visualization",
    "author": "[\"Razieh Shirzadkhani <razieh.shirzadkhani@gmail.com>\", \"shenyang Huang <shenyang.huang@mail.mcgill.ca>\", \"Elahe Kooshafar\", \"Farimah Poursafaei\"]",
    "author_email": "razieh.shirzadkhani@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c0/0f/a45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1/py-tgx-0.4.0.tar.gz",
    "platform": null,
    "description": "<!-- # TGX -->\n![TGX logo](docs/2023_TGX_logo.png)\n\n# Temporal Graph Analysis with TGX\n<h4>\n\t<a href=\"https://arxiv.org/abs/2402.03651\"><img src=\"https://img.shields.io/badge/arXiv-pdf-yellowgreen\"></a>\n\t<a href=\"https://pypi.org/project/py-tgx/\"><img src=\"https://img.shields.io/pypi/v/py-tgx.svg?color=brightgreen\"></a>\n\t<a href=\"https://complexdata-mila.github.io/TGX/\"><img src=\"https://img.shields.io/badge/docs-orange\"></a>\n</h4> \n\nThis repository contains the code for the paper \"Temporal Graph Analysis with TGX\" (WSDM 2024, Demo Track).\n\nTGX overview:\n- TGX supports all datasets from [TGB](https://tgb.complexdatalab.com/) and [Poursafaei et al. 2022](https://openreview.net/forum?id=1GVpwr2Tfdg) as well as any custom dataset in `.csv` format. \n- TGX provides numerous temporal graph visualization plots and statistics out of the box.\n\n\n## Dependecies\nTGX implementation works with `python >= 3.9` and can be installed as follows.\n\n1. Set up virtual environment (conda should work as well).\n\t```\n\tpython -m venv tgx_env/\n\tsource tgx_env/bin/activate\n\t```\n\n2. Upgrade pip (Optional)\n\t```\n\tpip install --upgrade pip\n\t```\n\n3. Install external packages\n\t```\n\tpip install -r requirements.txt\n\t```\n\n4. Install local dependencies under root directory `/TGX`.\n\t```\n\tpip install -e .\n\t```\n\n5. [Aternative] Install TGX from [`PyPi`](https://pypi.org/project/py-tgx/):\n\n\t```\n\tpip install py-tgx\n\t```\n\n6. [optional] Install `mkdocs` dependencies to serve the documentation locally.\n\t```\n\tpip install mkdocs-glightbox\n\t```\n\n\nFor tutorials on how to use TGX to generate visualizations and compute statistics for temporal graphs, see [`docs/tutorials/data_viz_stats.ipynb`](https://github.com/ComplexData-MILA/TGX/blob/master/docs/tutorials/data_viz_stats.ipynb)\n\n\n### Citation\nIf TGX is useful for your work, please consider citing it:\n```bibtex\n@article{shirzadkhani2024temporal,\n  title={Temporal Graph Analysis with TGX},\n  author={Shirzadkhani, Razieh and Huang, Shenyang and Kooshafar, Elahe and Rabbany, Reihaneh and Poursafaei, Farimah},\n  journal={arXiv preprint arXiv:2402.03651},\n  year={2024}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Temporal Graph Visualization with TGX",
    "version": "0.4.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/fpour/TGX/issues",
        "Homepage": "https://github.com/ComplexData-MILA/TGX"
    },
    "split_keywords": [
        "temporal",
        "graph",
        "visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e486c1000cdf8efb21dd354898a466bd75f77f26f8e6cff410cb82658573bd37",
                "md5": "ea2ecb983799be9d82bd3d7dd3bae73d",
                "sha256": "240019992344edcc88c12198882fcb217b57c783e5ca7dcbff25d66ff2290ed8"
            },
            "downloads": -1,
            "filename": "py_tgx-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ea2ecb983799be9d82bd3d7dd3bae73d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 27361,
            "upload_time": "2024-02-20T17:46:37",
            "upload_time_iso_8601": "2024-02-20T17:46:37.257489Z",
            "url": "https://files.pythonhosted.org/packages/e4/86/c1000cdf8efb21dd354898a466bd75f77f26f8e6cff410cb82658573bd37/py_tgx-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c00fa45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1",
                "md5": "84ca7800dde145a2ebd5cefc1efcce0d",
                "sha256": "a31f92b78b1eade1a832741f8d8335201feeeaa8149df03e4983d76d8456df1f"
            },
            "downloads": -1,
            "filename": "py-tgx-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "84ca7800dde145a2ebd5cefc1efcce0d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 23117,
            "upload_time": "2024-02-20T17:46:38",
            "upload_time_iso_8601": "2024-02-20T17:46:38.421905Z",
            "url": "https://files.pythonhosted.org/packages/c0/0f/a45181589aa7a0e3a0ebfb73b14a71611aa2462f69117342600086a958e1/py-tgx-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-20 17:46:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ComplexData-MILA",
    "github_project": "TGX",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "py-tgx"
}
        
Elapsed time: 0.18011s