py-txi


Namepy-txi JSON
Version 0.9.0 PyPI version JSON
download
home_pagehttps://github.com/IlyasMoutawwakil/py-txi
SummaryA Python wrapper around TGI and TEI servers
upload_time2024-07-15 09:05:49
maintainerNone
docs_urlNone
authorIlyas Moutawwakil
requires_pythonNone
licenseNone
keywords tgi llm tei embedding huggingface docker python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Py-TXI

[![PyPI version](https://badge.fury.io/py/py-txi.svg)](https://badge.fury.io/py/py-txi)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/py-txi)](https://pypi.org/project/py-txi/)
[![PyPI - Format](https://img.shields.io/pypi/format/py-txi)](https://pypi.org/project/py-txi/)
[![Downloads](https://pepy.tech/badge/py-txi)](https://pepy.tech/project/py-txi)
[![PyPI - License](https://img.shields.io/pypi/l/py-txi)](https://pypi.org/project/py-txi/)
[![Test](https://github.com/IlyasMoutawwakil/py-txi/actions/workflows/test.yaml/badge.svg)](https://github.com/IlyasMoutawwakil/py-txi/actions/workflows/tests.yaml)

Py-TXI is a Python wrapper around [Text-Generation-Inference](https://github.com/huggingface/text-generation-inference) and [Text-Embedding-Inference](https://github.com/huggingface/text-embeddings-inference) that enables creating and running TGI/TEI instances through the awesome `docker-py` in a similar style to Transformers API.

## Installation

```bash
pip install py-txi
```

Py-TXI is designed to be used in a similar way to Transformers API. We use `docker-py` (instead of a dirty `subprocess` solution) so that the containers you run are linked to the main process and are stopped automatically when your code finishes or fails.

## Advantages

- **Easy to use**: Py-TXI is designed to be used in a similar way to Transformers API.
- **Automatic cleanup**: Py-TXI stops the Docker container when your code finishes or fails.
- **Batched inference**: Py-TXI supports sending a batch of inputs to the server for inference.
- **Automatic port allocation**: Py-TXI automatically allocates a free port for the Inference server.
- **Configurable**: Py-TXI allows you to configure the Inference servers using a simple configuration object.
- **Verbose**: Py-TXI streams the logs of the underlying Docker container to the main process so you can debug easily.

## Usage

Here's an example of how to use it:

```python
from py_txi import TGI, TGIConfig

llm = TGI(config=TGIConfig(model_id="bigscience/bloom-560m", gpus="0"))
output = llm.generate(["Hi, I'm a language model", "I'm fine, how are you?"])
print("LLM:", output)
llm.close()
```

Output: ```LLM: [' student. I have a problem with the following code. I have a class that has a method that', '"\n\n"I\'m fine," said the girl, "but I don\'t want to be alone.']```

```python
from py_txi import TEI, TEIConfig

embed = TEI(config=TEIConfig(model_id="BAAI/bge-base-en-v1.5"))
output = embed.encode(["Hi, I'm an embedding model", "I'm fine, how are you?"])
print("Embed:", output)
embed.close()
```

Output: ```[array([[ 0.01058742, -0.01588806, -0.03487622, ..., -0.01613717,
         0.01772875, -0.02237891]], dtype=float32), array([[ 0.02815401, -0.02892136, -0.0536355 , ...,  0.01225784,
        -0.00241452, -0.02836569]], dtype=float32)]```

That's it! Now you can write your Python scripts using the power of TGI and TEI without having to worry about the underlying Docker containers.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/IlyasMoutawwakil/py-txi",
    "name": "py-txi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "tgi, llm, tei, embedding, huggingface, docker, python",
    "author": "Ilyas Moutawwakil",
    "author_email": "ilyas.moutawwakil@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/10/19/e5e26026b1fad8e129ff414a4e6dbee7a7d4f5b75d96c6628102c3519b65/py-txi-0.9.0.tar.gz",
    "platform": "linux",
    "description": "# Py-TXI\n\n[![PyPI version](https://badge.fury.io/py/py-txi.svg)](https://badge.fury.io/py/py-txi)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/py-txi)](https://pypi.org/project/py-txi/)\n[![PyPI - Format](https://img.shields.io/pypi/format/py-txi)](https://pypi.org/project/py-txi/)\n[![Downloads](https://pepy.tech/badge/py-txi)](https://pepy.tech/project/py-txi)\n[![PyPI - License](https://img.shields.io/pypi/l/py-txi)](https://pypi.org/project/py-txi/)\n[![Test](https://github.com/IlyasMoutawwakil/py-txi/actions/workflows/test.yaml/badge.svg)](https://github.com/IlyasMoutawwakil/py-txi/actions/workflows/tests.yaml)\n\nPy-TXI is a Python wrapper around [Text-Generation-Inference](https://github.com/huggingface/text-generation-inference) and [Text-Embedding-Inference](https://github.com/huggingface/text-embeddings-inference) that enables creating and running TGI/TEI instances through the awesome `docker-py` in a similar style to Transformers API.\n\n## Installation\n\n```bash\npip install py-txi\n```\n\nPy-TXI is designed to be used in a similar way to Transformers API. We use `docker-py` (instead of a dirty `subprocess` solution) so that the containers you run are linked to the main process and are stopped automatically when your code finishes or fails.\n\n## Advantages\n\n- **Easy to use**: Py-TXI is designed to be used in a similar way to Transformers API.\n- **Automatic cleanup**: Py-TXI stops the Docker container when your code finishes or fails.\n- **Batched inference**: Py-TXI supports sending a batch of inputs to the server for inference.\n- **Automatic port allocation**: Py-TXI automatically allocates a free port for the Inference server.\n- **Configurable**: Py-TXI allows you to configure the Inference servers using a simple configuration object.\n- **Verbose**: Py-TXI streams the logs of the underlying Docker container to the main process so you can debug easily.\n\n## Usage\n\nHere's an example of how to use it:\n\n```python\nfrom py_txi import TGI, TGIConfig\n\nllm = TGI(config=TGIConfig(model_id=\"bigscience/bloom-560m\", gpus=\"0\"))\noutput = llm.generate([\"Hi, I'm a language model\", \"I'm fine, how are you?\"])\nprint(\"LLM:\", output)\nllm.close()\n```\n\nOutput: ```LLM: [' student. I have a problem with the following code. I have a class that has a method that', '\"\\n\\n\"I\\'m fine,\" said the girl, \"but I don\\'t want to be alone.']```\n\n```python\nfrom py_txi import TEI, TEIConfig\n\nembed = TEI(config=TEIConfig(model_id=\"BAAI/bge-base-en-v1.5\"))\noutput = embed.encode([\"Hi, I'm an embedding model\", \"I'm fine, how are you?\"])\nprint(\"Embed:\", output)\nembed.close()\n```\n\nOutput: ```[array([[ 0.01058742, -0.01588806, -0.03487622, ..., -0.01613717,\n         0.01772875, -0.02237891]], dtype=float32), array([[ 0.02815401, -0.02892136, -0.0536355 , ...,  0.01225784,\n        -0.00241452, -0.02836569]], dtype=float32)]```\n\nThat's it! Now you can write your Python scripts using the power of TGI and TEI without having to worry about the underlying Docker containers.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python wrapper around TGI and TEI servers",
    "version": "0.9.0",
    "project_urls": {
        "Homepage": "https://github.com/IlyasMoutawwakil/py-txi"
    },
    "split_keywords": [
        "tgi",
        " llm",
        " tei",
        " embedding",
        " huggingface",
        " docker",
        " python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8f9f2aa9f2796ebcfc73fa218ad40e95565da0c21a07b17f13a1b6acf87e83d",
                "md5": "bd2687e2baff0397a8d20b0c154becff",
                "sha256": "f9afa42f7b062e65d9229cd01d4401ae17db2fe006eaebe0f4e48c0f96354522"
            },
            "downloads": -1,
            "filename": "py_txi-0.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bd2687e2baff0397a8d20b0c154becff",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 12502,
            "upload_time": "2024-07-15T09:05:31",
            "upload_time_iso_8601": "2024-07-15T09:05:31.523231Z",
            "url": "https://files.pythonhosted.org/packages/c8/f9/f2aa9f2796ebcfc73fa218ad40e95565da0c21a07b17f13a1b6acf87e83d/py_txi-0.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1019e5e26026b1fad8e129ff414a4e6dbee7a7d4f5b75d96c6628102c3519b65",
                "md5": "6011e75c64740b7cd94fbd2a81c276a6",
                "sha256": "dc3c9ab2b89155b54728ddb5733f3ee745ca42858a87f11d351b24bdc858412f"
            },
            "downloads": -1,
            "filename": "py-txi-0.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6011e75c64740b7cd94fbd2a81c276a6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11208,
            "upload_time": "2024-07-15T09:05:49",
            "upload_time_iso_8601": "2024-07-15T09:05:49.811122Z",
            "url": "https://files.pythonhosted.org/packages/10/19/e5e26026b1fad8e129ff414a4e6dbee7a7d4f5b75d96c6628102c3519b65/py-txi-0.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-15 09:05:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "IlyasMoutawwakil",
    "github_project": "py-txi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "py-txi"
}
        
Elapsed time: 0.30457s