# pyEager
A simple package to read in eager results.
## Available functions
- `compile_endogenous_table()`: Creates a compiled table of endogenous DNA statistics from endorspy including all the information in the list of JSON file paths provided. Wraps `parse_endorspy_json` on all provided JSON paths.
- `parse_endorspy_json()`: Read in the information in a single endorspy JSON file.
- `compile_damage_table()`: Creates a compiled table of select DamageProfiler and mapDamage2 results from the list of DamageProfiler JSON files and/or mapDamage2 result directories provided. Ths resulting dataframe includes the number of reads analysed as well as the damage in the first 2 bp of either end of DNA molecules for each sample.
- `collect_damageprofiler_results()`: Collects the results from multiple damageprofiler JSON output files into a large dictionary containing all the results for each sample. This function wraps `parse_damageprofiler_json` across all provided JSON files.
- `parse_damageprofiler_json()`: Read in the information in a single damageprofiler JSON output file.
- `collect_mapdamage_results()`: Collects the results from multiple mapDamage2 result directories into a large dictionary containing all the results for each sample. This function wraps `parse_mapdamage_results` across all provided result directories.
- `parse_mapdamage_results()`: Read in the information in a single mapDamage2 results directory.
An additional parameter `standardise_colnames` can be used to standardise the column names of the resulting dataframe to match those generated by `parse_damageprofiler_json`.
- `compile_snp_coverage_table()`: Creates a compiled table of SNP coverage results from the list of JSON files provided. Wraps `parse_snp_coverage_json` across all provided JSON files
- `parse_snp_coverage_json()`: Read in the information in a single SNP coverage JSON file.
- `parse_sexdeterrmine_json()`: Reads in the Sexdeterrmine output JSON into a dataframe.
- `parse_nuclear_contamination_json()`: Reads in the nuclear contamination output JSON into a dataframe.
- `parse_eager_tsv()`: Reads in the eager input TSV into a dataframe, with additional columns specifying what merging steps took place.
- `infer_merged_bam_names()`: Infer the names of eager output files based on the merging steps that took place.
- `parse_general_stats_table()`: Reads in the general stats table output of MultiQC into a dataframe.
## Installation
<!-- TODO Add installation instructions -->
## Usage
<!-- TODO Add usage examples -->
## License
[MIT](LICENSE.txt)
Raw data
{
"_id": null,
"home_page": "https://github.com/TCLamnidis/pyEager",
"name": "pyEager",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "python, pandas, nf-core, eager, nf-core/eager, ancient DNA",
"author": "Thiseas C. Lamnidis",
"author_email": "thisseass@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/a4/31/fc79dd0ccbd20480854dcd14e193f4380625cd456068261c001e6d26da35/pyEager-0.1.5.0.tar.gz",
"platform": null,
"description": "# pyEager\n\nA simple package to read in eager results.\n\n## Available functions\n\n- `compile_endogenous_table()`: Creates a compiled table of endogenous DNA statistics from endorspy including all the information in the list of JSON file paths provided. Wraps `parse_endorspy_json` on all provided JSON paths.\n - `parse_endorspy_json()`: Read in the information in a single endorspy JSON file.\n- `compile_damage_table()`: Creates a compiled table of select DamageProfiler and mapDamage2 results from the list of DamageProfiler JSON files and/or mapDamage2 result directories provided. Ths resulting dataframe includes the number of reads analysed as well as the damage in the first 2 bp of either end of DNA molecules for each sample.\n - `collect_damageprofiler_results()`: Collects the results from multiple damageprofiler JSON output files into a large dictionary containing all the results for each sample. This function wraps `parse_damageprofiler_json` across all provided JSON files.\n - `parse_damageprofiler_json()`: Read in the information in a single damageprofiler JSON output file.\n - `collect_mapdamage_results()`: Collects the results from multiple mapDamage2 result directories into a large dictionary containing all the results for each sample. This function wraps `parse_mapdamage_results` across all provided result directories.\n - `parse_mapdamage_results()`: Read in the information in a single mapDamage2 results directory.\n An additional parameter `standardise_colnames` can be used to standardise the column names of the resulting dataframe to match those generated by `parse_damageprofiler_json`.\n- `compile_snp_coverage_table()`: Creates a compiled table of SNP coverage results from the list of JSON files provided. Wraps `parse_snp_coverage_json` across all provided JSON files\n - `parse_snp_coverage_json()`: Read in the information in a single SNP coverage JSON file.\n- `parse_sexdeterrmine_json()`: Reads in the Sexdeterrmine output JSON into a dataframe.\n- `parse_nuclear_contamination_json()`: Reads in the nuclear contamination output JSON into a dataframe.\n- `parse_eager_tsv()`: Reads in the eager input TSV into a dataframe, with additional columns specifying what merging steps took place.\n- `infer_merged_bam_names()`: Infer the names of eager output files based on the merging steps that took place.\n- `parse_general_stats_table()`: Reads in the general stats table output of MultiQC into a dataframe.\n\n## Installation\n\n<!-- TODO Add installation instructions -->\n\n## Usage\n\n<!-- TODO Add usage examples -->\n\n## License\n\n[MIT](LICENSE.txt)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A simple package to read in eager results.",
"version": "0.1.5.0",
"project_urls": {
"Download": "https://github.com/TCLamnidis/pyEager/archive/refs/tags/0.1.5.0.tar.gz",
"Homepage": "https://github.com/TCLamnidis/pyEager"
},
"split_keywords": [
"python",
" pandas",
" nf-core",
" eager",
" nf-core/eager",
" ancient dna"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a431fc79dd0ccbd20480854dcd14e193f4380625cd456068261c001e6d26da35",
"md5": "2fa854bcdda944fa0be7f846b697862d",
"sha256": "9f9b3faa1d72c7e6ddc0c3694040d7bfd26b179b2b5aa539604645e3e97e12c2"
},
"downloads": -1,
"filename": "pyEager-0.1.5.0.tar.gz",
"has_sig": false,
"md5_digest": "2fa854bcdda944fa0be7f846b697862d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 8072,
"upload_time": "2024-11-05T13:47:46",
"upload_time_iso_8601": "2024-11-05T13:47:46.717406Z",
"url": "https://files.pythonhosted.org/packages/a4/31/fc79dd0ccbd20480854dcd14e193f4380625cd456068261c001e6d26da35/pyEager-0.1.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-05 13:47:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "TCLamnidis",
"github_project": "pyEager",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyeager"
}