Name | pyIEM JSON |
Version |
1.21.0
JSON |
| download |
home_page | None |
Summary | Collection of things that may help with processing weather data. |
upload_time | 2024-09-06 17:36:33 |
maintainer | None |
docs_url | None |
author | None |
requires_python | None |
license | Apache |
keywords |
meteorology
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
pyIEM
=====
A collection of python code that support various other python projects I have
and the [Iowa Environmental Mesonet](https://mesonet.agron.iastate.edu). A goal here is to upstream anything useful into [Unidata's MetPy](https://github.com/Unidata/MetPy) and also remove any redundant code.
[![CodeCov](https://codecov.io/gh/akrherz/pyIEM/branch/main/graph/badge.svg)](https://codecov.io/gh/akrherz/pyIEM)
Current release info
--------------------
| Name | Downloads | Version | Platforms |
| --- | --- | --- | --- |
| [![Conda Recipe](https://img.shields.io/badge/recipe-pyiem-green.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Version](https://img.shields.io/conda/vn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) |
Dependencies
------------
Python 3.9+ is required. Python releases 3.9 through 3.11 are actively tested
and supported within this repository.
The codebase currently makes direct database calls with hardcoded assumptions
of the hostname `iemdb.local` and database names. Someday, I'll use a proper ORM
and software design techniques to make this more extensible for others!
Installation
------------
Since this library depends on `Cartopy`, you likely do **not** want to let `pip`
install `Cartopy`. So the installation options are either:
1. Install `Cartopy` via some other mechanism than `pip`.
2. Install `pyiem` via pip.
Or:
1. Install `pyiem` via `conda` using the `conda-forge` channel.
How to use NWS product ingestors
--------------------------------
This library provides a number of parsers for various NWS products. The implementation of these parsers can be found with my [pyWWA project](https://github.com/akrherz/pyWWA). The main limitation is that the `pyWWA` parsers use [Twisted Python](https://twistedmatrix.com) and thus have a somewhat steep learning curve. The `pyIEM` parsers do not require the usage of Twisted though, so how does one use them?
The general entry point for a text product is the `parser` method of `pyiem.nws.products`. So given a NWS text file, the code would look like.
```python
from pyiem.nws.products import parser
text = open('MYFILE.txt').read()
prod = parser(text)
print(prod.get_product_id())
```
The actual methods and attributes on the `prod` object above will vary depending on the type of product involved.
Raw data
{
"_id": null,
"home_page": null,
"name": "pyIEM",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "meteorology",
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/a2/89/f567231da92d5357f068eb4a1e41165555c1d1cd9e755200f5732e9b451f/pyiem-1.21.0.tar.gz",
"platform": null,
"description": "pyIEM\n=====\n\nA collection of python code that support various other python projects I have\nand the [Iowa Environmental Mesonet](https://mesonet.agron.iastate.edu). A goal here is to upstream anything useful into [Unidata's MetPy](https://github.com/Unidata/MetPy) and also remove any redundant code.\n\n[![CodeCov](https://codecov.io/gh/akrherz/pyIEM/branch/main/graph/badge.svg)](https://codecov.io/gh/akrherz/pyIEM)\n\nCurrent release info\n--------------------\n\n| Name | Downloads | Version | Platforms |\n| --- | --- | --- | --- |\n| [![Conda Recipe](https://img.shields.io/badge/recipe-pyiem-green.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Version](https://img.shields.io/conda/vn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) | [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/pyiem.svg)](https://anaconda.org/conda-forge/pyiem) |\n\nDependencies\n------------\n\nPython 3.9+ is required. Python releases 3.9 through 3.11 are actively tested\nand supported within this repository.\n\nThe codebase currently makes direct database calls with hardcoded assumptions\nof the hostname `iemdb.local` and database names. Someday, I'll use a proper ORM\nand software design techniques to make this more extensible for others!\n\nInstallation\n------------\n\nSince this library depends on `Cartopy`, you likely do **not** want to let `pip`\ninstall `Cartopy`. So the installation options are either:\n\n1. Install `Cartopy` via some other mechanism than `pip`.\n2. Install `pyiem` via pip.\n\nOr:\n\n1. Install `pyiem` via `conda` using the `conda-forge` channel.\n\nHow to use NWS product ingestors\n--------------------------------\n\nThis library provides a number of parsers for various NWS products. The implementation of these parsers can be found with my [pyWWA project](https://github.com/akrherz/pyWWA). The main limitation is that the `pyWWA` parsers use [Twisted Python](https://twistedmatrix.com) and thus have a somewhat steep learning curve. The `pyIEM` parsers do not require the usage of Twisted though, so how does one use them?\n\nThe general entry point for a text product is the `parser` method of `pyiem.nws.products`. So given a NWS text file, the code would look like.\n\n```python\nfrom pyiem.nws.products import parser\ntext = open('MYFILE.txt').read()\nprod = parser(text)\nprint(prod.get_product_id())\n```\n\nThe actual methods and attributes on the `prod` object above will vary depending on the type of product involved.\n",
"bugtrack_url": null,
"license": "Apache",
"summary": "Collection of things that may help with processing weather data.",
"version": "1.21.0",
"project_urls": {
"homepage": "https://github.com/akrherz/pyIEM"
},
"split_keywords": [
"meteorology"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a289f567231da92d5357f068eb4a1e41165555c1d1cd9e755200f5732e9b451f",
"md5": "5ef89b8186d4004d319a267081eb6291",
"sha256": "2f8f563ba6e5a96a0ff94aa7455e399ff315ea2cbd74a143cf6179def7d7821f"
},
"downloads": -1,
"filename": "pyiem-1.21.0.tar.gz",
"has_sig": false,
"md5_digest": "5ef89b8186d4004d319a267081eb6291",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 34842657,
"upload_time": "2024-09-06T17:36:33",
"upload_time_iso_8601": "2024-09-06T17:36:33.647847Z",
"url": "https://files.pythonhosted.org/packages/a2/89/f567231da92d5357f068eb4a1e41165555c1d1cd9e755200f5732e9b451f/pyiem-1.21.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-06 17:36:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "akrherz",
"github_project": "pyIEM",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "pyiem"
}