Name | pyLump JSON |
Version |
0.1.0
JSON |
| download |
home_page | |
Summary | Multi Degree of Freedom (mass-spring-damper) Models. |
upload_time | 2023-11-15 09:12:46 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.10 |
license | |
keywords |
mdof
dynamics
lumped mass
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
pyLump
======
Multi Degree of Freedom (mass-spring-damper) Models.
----------------------------------------------------
For more information check out the showcase examples and see documentation_.
Basic ``pyLump`` usage:
--------------------------
Make an instance of the ``Model`` class:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
a = pyLump.Model(
n_dof,
mass,
stiffness,
damping,
boundaries="both"
)
Getting system properties:
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several methods available for different system properties:
.. code:: python
M = a.get_mass_matrix()
K = a.get_stiffness_matrix()
C = a.get_damping_matrix()
eig_freq = a.get_eig_freq()
eig_val = a.get_eig_val()
eig_vec = a.get_eig_vec()
d_ratios = a.get_damping_ratios()
Obtaining frequency response functions and impulse response functions:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To obtain the FRF (frequency response function) matrix and the IRF (impulse reponse function) matrix we use the following methods:
.. code:: python
FRF_matrix = a.get_FRF_matrix(freq)
IRF_matrix = a.get_IRF_matrix(freq)
Calculating response:
~~~~~~~~~~~~~~~~~~~~~
We can calculate the systems response based on known excitation the following way:
.. code:: python
response = a.get_response(
exc_dof,
exc,
sampling_rate,
resp_dof
)
.. _documentation: https://pyLump.readthedocs.io/en/latest/
Raw data
{
"_id": null,
"home_page": "",
"name": "pyLump",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "\"Luka Novak, Domen Gorjup, Janko Slavi\u010d\" <janko.slavic@fs.uni-lj.si>",
"keywords": "MDOF,dynamics,lumped mass",
"author": "",
"author_email": "\"Luka Novak, Domen Gorjup, Janko Slavi\u010d\" <janko.slavic@fs.uni-lj.si>",
"download_url": "https://files.pythonhosted.org/packages/58/1e/b67f86c6c0702b4a249bef9563a849496e36cd62869062ce06b637a5aced/pylump-0.1.0.tar.gz",
"platform": null,
"description": "pyLump\n======\n\nMulti Degree of Freedom (mass-spring-damper) Models.\n----------------------------------------------------\nFor more information check out the showcase examples and see documentation_.\n\nBasic ``pyLump`` usage:\n--------------------------\n\nMake an instance of the ``Model`` class:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: python\n\n a = pyLump.Model(\n n_dof,\n mass,\n stiffness,\n damping,\n boundaries=\"both\"\n )\n\nGetting system properties:\n~~~~~~~~~~~~~~~~~~~~~~~~~~\nThere are several methods available for different system properties:\n\n.. code:: python\n\n M = a.get_mass_matrix()\n K = a.get_stiffness_matrix()\n C = a.get_damping_matrix()\n eig_freq = a.get_eig_freq()\n eig_val = a.get_eig_val()\n eig_vec = a.get_eig_vec()\n d_ratios = a.get_damping_ratios()\n\nObtaining frequency response functions and impulse response functions:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\nTo obtain the FRF (frequency response function) matrix and the IRF (impulse reponse function) matrix we use the following methods:\n\n.. code:: python\n\n FRF_matrix = a.get_FRF_matrix(freq)\n IRF_matrix = a.get_IRF_matrix(freq)\n\nCalculating response:\n~~~~~~~~~~~~~~~~~~~~~\nWe can calculate the systems response based on known excitation the following way:\n\n.. code:: python\n\n response = a.get_response(\n exc_dof,\n exc,\n sampling_rate,\n resp_dof\n )\n\n.. _documentation: https://pyLump.readthedocs.io/en/latest/",
"bugtrack_url": null,
"license": "",
"summary": "Multi Degree of Freedom (mass-spring-damper) Models.",
"version": "0.1.0",
"project_urls": {
"documentation": "https://pyLump.readthedocs.io/en/latest/",
"homepage": "https://github.com/ladisk/pyLump",
"source": "https://github.com/ladisk/pyLump"
},
"split_keywords": [
"mdof",
"dynamics",
"lumped mass"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f9ebdac39392e155d0d981c72978419d2c7363f6abf6c0abc47d4b3be0bac165",
"md5": "48961be665e0e4c60cf017a5ace45141",
"sha256": "d298b47fd8a49da30bbb18996f8490c86cd5920fbb2c9ecc3d4b57292978896f"
},
"downloads": -1,
"filename": "pylump-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "48961be665e0e4c60cf017a5ace45141",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 8486,
"upload_time": "2023-11-15T09:12:43",
"upload_time_iso_8601": "2023-11-15T09:12:43.927942Z",
"url": "https://files.pythonhosted.org/packages/f9/eb/dac39392e155d0d981c72978419d2c7363f6abf6c0abc47d4b3be0bac165/pylump-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "581eb67f86c6c0702b4a249bef9563a849496e36cd62869062ce06b637a5aced",
"md5": "96992bd1e450d9013d683c6a81e86811",
"sha256": "33f9d614bd048de20511e072e8dc52701717a59c8c958f202393dd2823dcdbea"
},
"downloads": -1,
"filename": "pylump-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "96992bd1e450d9013d683c6a81e86811",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 818615,
"upload_time": "2023-11-15T09:12:46",
"upload_time_iso_8601": "2023-11-15T09:12:46.739963Z",
"url": "https://files.pythonhosted.org/packages/58/1e/b67f86c6c0702b4a249bef9563a849496e36cd62869062ce06b637a5aced/pylump-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-15 09:12:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ladisk",
"github_project": "pyLump",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "pylump"
}