pyMSDtorch


NamepyMSDtorch JSON
Version 0.1.6 PyPI version JSON
download
home_pagehttps://bitbucket.org/berkeleylab/pymsdtorch/
SummaryPython Boilerplate contains all the boilerplate you need to create a Python package.
upload_time2022-12-16 19:40:25
maintainer
docs_urlNone
authorPetrus H. Zwart, Eric J. Roberts
requires_python>=3.8
licenseBSD License
keywords pymsdtorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Welcome to pyMSDtorch's documentation!
======================================

pyMSDtorch provides easy access to a number of segmentation and denoising methods using convolution neural networks.
The tools available are build for microscopy and synchrotron-imaging/scattering data in mind, but can be used elsewhere
as well.

The easiest way to start playing with the code is to install pyMSDtorch and perform denoising/segmenting using custom
neural networks in our tutorial notebooks located in the pyMSDtorch/tutorials folder.

Check the readthedocs page or the README.md file for more information.

=======
History
=======

0.1.0 (2021-08-10)
------------------

* First release.


0.1.1 (2022-11-28)
------------------

* Second release
* getting ready for 'pip install pyMSDtorch'
* added docstrings as much as we can
* building template notebooks

0.1.2-6 (2022-12-15)
--------------------

* Second release - but now for real
* Ready for 'pip install pyMSDtorch'
* Documentation update
* Added notebooks and functionality for image classification

            

Raw data

            {
    "_id": null,
    "home_page": "https://bitbucket.org/berkeleylab/pymsdtorch/",
    "name": "pyMSDtorch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "pyMSDtorch",
    "author": "Petrus H. Zwart, Eric J. Roberts",
    "author_email": "PHZwart@lbl.gov, EJroberts@lbl.gov",
    "download_url": "https://files.pythonhosted.org/packages/d1/6d/08ad47e55549fd4fb2a28b0741f888b14ceae1614b918f08550d5dcd61cf/pyMSDtorch-0.1.6.tar.gz",
    "platform": null,
    "description": "Welcome to pyMSDtorch's documentation!\n======================================\n\npyMSDtorch provides easy access to a number of segmentation and denoising methods using convolution neural networks.\nThe tools available are build for microscopy and synchrotron-imaging/scattering data in mind, but can be used elsewhere\nas well.\n\nThe easiest way to start playing with the code is to install pyMSDtorch and perform denoising/segmenting using custom\nneural networks in our tutorial notebooks located in the pyMSDtorch/tutorials folder.\n\nCheck the readthedocs page or the README.md file for more information.\n\n=======\nHistory\n=======\n\n0.1.0 (2021-08-10)\n------------------\n\n* First release.\n\n\n0.1.1 (2022-11-28)\n------------------\n\n* Second release\n* getting ready for 'pip install pyMSDtorch'\n* added docstrings as much as we can\n* building template notebooks\n\n0.1.2-6 (2022-12-15)\n--------------------\n\n* Second release - but now for real\n* Ready for 'pip install pyMSDtorch'\n* Documentation update\n* Added notebooks and functionality for image classification\n",
    "bugtrack_url": null,
    "license": "BSD License",
    "summary": "Python Boilerplate contains all the boilerplate you need to create a Python package.",
    "version": "0.1.6",
    "split_keywords": [
        "pymsdtorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "8af0f92dd6d9591b16ac741558a61217",
                "sha256": "0f0c68fdd3032818e6f641788a82c644de4a737890ed3b15a51718b259903955"
            },
            "downloads": -1,
            "filename": "pyMSDtorch-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "8af0f92dd6d9591b16ac741558a61217",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 278661,
            "upload_time": "2022-12-16T19:40:25",
            "upload_time_iso_8601": "2022-12-16T19:40:25.071595Z",
            "url": "https://files.pythonhosted.org/packages/d1/6d/08ad47e55549fd4fb2a28b0741f888b14ceae1614b918f08550d5dcd61cf/pyMSDtorch-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-16 19:40:25",
    "github": false,
    "gitlab": false,
    "bitbucket": true,
    "bitbucket_user": "berkeleylab",
    "bitbucket_project": "pymsdtorch",
    "lcname": "pymsdtorch"
}
        
Elapsed time: 0.25262s