Name | pyPCoA JSON |
Version |
0.1.4.2
JSON |
| download |
home_page | https://github.com/YukiHSun/pyPCoA |
Summary | A Python package for performing PCoA analysis using Jaccard and Bray-Curtis distances. |
upload_time | 2024-11-14 06:05:08 |
maintainer | None |
docs_url | None |
author | Yuki Hamaguchi |
requires_python | >=3.9 |
license | MIT License Copyright (c) 2024 YukiHSun Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
keywords |
pcoa
jaccard
bray-curtis
bioinformatics
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# pyPCoA
`pyPCoA`は、主座標分析(PCoA)を行うPythonパッケージです。
## 特徴
- Excelファイルからデータを読み込み
- Bray-Curtis距離の計算(Jaccard距離の計算は次のversionで可能にします。近日公開)
- PCoAの実行と結果の保存
## インストール
```bash
pip install pyPCoA
Raw data
{
"_id": null,
"home_page": "https://github.com/YukiHSun/pyPCoA",
"name": "pyPCoA",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "PCoA, Jaccard, Bray-Curtis, Bioinformatics",
"author": "Yuki Hamaguchi",
"author_email": "Yuki Hamaguchi <Yuki_Hamaguchi@suntory.co.jp>",
"download_url": "https://files.pythonhosted.org/packages/35/bf/ddcb7827e0198efce5c7e3dd1f8443623fae2fcb2179c7b972e22b88482a/pyPCoA-0.1.4.2.tar.gz",
"platform": null,
"description": "# pyPCoA\n\n`pyPCoA`\u306f\u3001\u4e3b\u5ea7\u6a19\u5206\u6790\uff08PCoA\uff09\u3092\u884c\u3046Python\u30d1\u30c3\u30b1\u30fc\u30b8\u3067\u3059\u3002\n\n## \u7279\u5fb4\n\n- Excel\u30d5\u30a1\u30a4\u30eb\u304b\u3089\u30c7\u30fc\u30bf\u3092\u8aad\u307f\u8fbc\u307f\n- Bray-Curtis\u8ddd\u96e2\u306e\u8a08\u7b97(Jaccard\u8ddd\u96e2\u306e\u8a08\u7b97\u306f\u6b21\u306eversion\u3067\u53ef\u80fd\u306b\u3057\u307e\u3059\u3002\u8fd1\u65e5\u516c\u958b)\n- PCoA\u306e\u5b9f\u884c\u3068\u7d50\u679c\u306e\u4fdd\u5b58\n\n## \u30a4\u30f3\u30b9\u30c8\u30fc\u30eb\n\n```bash\npip install pyPCoA\n",
"bugtrack_url": null,
"license": "MIT License Copyright (c) 2024 YukiHSun Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
"summary": "A Python package for performing PCoA analysis using Jaccard and Bray-Curtis distances.",
"version": "0.1.4.2",
"project_urls": {
"Homepage": "https://github.com/YukiHSun/pyPCoA"
},
"split_keywords": [
"pcoa",
" jaccard",
" bray-curtis",
" bioinformatics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "99f80ade62e574aa3cc8ba873bb07633a25ce94f30c142dc2d01d286fda460cb",
"md5": "03d6b444361c59ec8edfceee6eec1283",
"sha256": "ca82a143cb226e70014a56b84b1248c7614c9ebee7eb44b8e605760fa24c5f33"
},
"downloads": -1,
"filename": "pyPCoA-0.1.4.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "03d6b444361c59ec8edfceee6eec1283",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 21465,
"upload_time": "2024-11-14T06:05:06",
"upload_time_iso_8601": "2024-11-14T06:05:06.776531Z",
"url": "https://files.pythonhosted.org/packages/99/f8/0ade62e574aa3cc8ba873bb07633a25ce94f30c142dc2d01d286fda460cb/pyPCoA-0.1.4.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "35bfddcb7827e0198efce5c7e3dd1f8443623fae2fcb2179c7b972e22b88482a",
"md5": "1b21387658083c02adfdbea75a65f2da",
"sha256": "c294ce49f226b30e268c671bdee57c5c28d85539a2e3993173105b4b3803fb36"
},
"downloads": -1,
"filename": "pyPCoA-0.1.4.2.tar.gz",
"has_sig": false,
"md5_digest": "1b21387658083c02adfdbea75a65f2da",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 22621,
"upload_time": "2024-11-14T06:05:08",
"upload_time_iso_8601": "2024-11-14T06:05:08.703490Z",
"url": "https://files.pythonhosted.org/packages/35/bf/ddcb7827e0198efce5c7e3dd1f8443623fae2fcb2179c7b972e22b88482a/pyPCoA-0.1.4.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-14 06:05:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "YukiHSun",
"github_project": "pyPCoA",
"github_not_found": true,
"lcname": "pypcoa"
}