pyTensorlab


NamepyTensorlab JSON
Version 2025.10.3b0 PyPI version JSON
download
home_pagehttps://www.pytensorlab.net/
SummaryA Python package for tensor computations.
upload_time2025-10-14 23:15:18
maintainerNico Vervliet
docs_urlNone
authorNico Vervliet
requires_python>=3.10
licenseNone
keywords tensor array tensor decomposition visualization complex optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyTensorlab

pyTensorlab is a Python package for tensor computations and complex optimization. The
packages provides the following:

- data types to represent sparse, incomplete, structured and decomposed tensors
  efficiently;
- tools to generate and work with these data types effectively and efficiently;
- algorithms for computing the canonical polyadic decomposition, the multilinear
  singular value decomposition, the Tucker decomposition or low multilinear rank
  approximation and the tensor-train decomposition;
- tensorization techniques relying on statistics or Hankelization;
- visualization routines;
- preconditioned Gauss-Newton type optimization methods for complex variables;
- fully typed code, which facilitates development.

pyTensorlab is a reimplementation of the Matlab toolbox
[Tensorlab](https://www.tensorlab.net). Currently, the feature set is not identical. The
Matlab toolbox also supports block term decompositions and has a structured data fusion
framework which relies on a domain specific language to easily model coupled matrix and
tensor decompositions and prior knowledge. On the other hand, pyTensorlab provides basic
support for the TT decomposition and a more complete set of complex Gauss-Newton type
optimization algorithms.

## Getting Started

To install pyTensorlab, use:

```console
$ pip install pytensorlab
```

pyTensorlab requires Python 3.10 to take advantage of new typing features. NumPy, SciPy
and Numba for underly the main computations. Pymanopt is used for manifold-based
optimization for low multilinear rank approximation and Vedo for visualization.

As an example, the canonical polyadic decomposition of a noisy rank-3 tensor can be
computed as follows:

```python
>>> import pytensorlab as tl
>>> import numpy as np
>>> shape = (10, 11, 12)
>>> Tpd = tl.PolyadicTensor.random(shape, 3)
>>> Tn = tl.noisy(np.array(Tpd), snr=20)
>>> Tres, info = tl.cpd(Tn, nterm=3)
```
## Citation

If you are using pyTensorlab, please consider citing:

N. Vervliet, S. Hendrickx, R. Widdershoven, N. Govindarajan, S. Sofi, L. De Lathauwer,
_"pyTensorlab 2025.10,"_ Oct. 2025. Available online at
[www.pytensorlab.net](https://www.pytensorlab.net).

## Contributors

We would like to thank all contributors:

- Ayvaz, Muzaffer
- Boussé, Martijn
- De Lathauwer, Lieven
- Devogel, Andreas
- Govindarajan, Nithin
- Hendrickx, Stijn
- Iannacito, Martina
- Seeuws, Nick
- Sofi, Shakir
- Vermeylen, Charlotte
- Vervliet, Nico
- Widdershoven, Raphaël

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.pytensorlab.net/",
    "name": "pyTensorlab",
    "maintainer": "Nico Vervliet",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Nico.Vervliet@kuleuven.be",
    "keywords": "tensor, array, tensor decomposition, visualization, complex optimization",
    "author": "Nico Vervliet",
    "author_email": "Nico.Vervliet@kuleuven.be",
    "download_url": "https://files.pythonhosted.org/packages/fd/46/1dc3ae176eaaa298cc01a5fddcab61da7431321f4ffca2ef30661c88f31d/pytensorlab-2025.10.3b0.tar.gz",
    "platform": null,
    "description": "# pyTensorlab\n\npyTensorlab is a Python package for tensor computations and complex optimization. The\npackages provides the following:\n\n- data types to represent sparse, incomplete, structured and decomposed tensors\n  efficiently;\n- tools to generate and work with these data types effectively and efficiently;\n- algorithms for computing the canonical polyadic decomposition, the multilinear\n  singular value decomposition, the Tucker decomposition or low multilinear rank\n  approximation and the tensor-train decomposition;\n- tensorization techniques relying on statistics or Hankelization;\n- visualization routines;\n- preconditioned Gauss-Newton type optimization methods for complex variables;\n- fully typed code, which facilitates development.\n\npyTensorlab is a reimplementation of the Matlab toolbox\n[Tensorlab](https://www.tensorlab.net). Currently, the feature set is not identical. The\nMatlab toolbox also supports block term decompositions and has a structured data fusion\nframework which relies on a domain specific language to easily model coupled matrix and\ntensor decompositions and prior knowledge. On the other hand, pyTensorlab provides basic\nsupport for the TT decomposition and a more complete set of complex Gauss-Newton type\noptimization algorithms.\n\n## Getting Started\n\nTo install pyTensorlab, use:\n\n```console\n$ pip install pytensorlab\n```\n\npyTensorlab requires Python 3.10 to take advantage of new typing features. NumPy, SciPy\nand Numba for underly the main computations. Pymanopt is used for manifold-based\noptimization for low multilinear rank approximation and Vedo for visualization.\n\nAs an example, the canonical polyadic decomposition of a noisy rank-3 tensor can be\ncomputed as follows:\n\n```python\n>>> import pytensorlab as tl\n>>> import numpy as np\n>>> shape = (10, 11, 12)\n>>> Tpd = tl.PolyadicTensor.random(shape, 3)\n>>> Tn = tl.noisy(np.array(Tpd), snr=20)\n>>> Tres, info = tl.cpd(Tn, nterm=3)\n```\n## Citation\n\nIf you are using pyTensorlab, please consider citing:\n\nN. Vervliet, S. Hendrickx, R. Widdershoven, N. Govindarajan, S. Sofi, L. De Lathauwer,\n_\"pyTensorlab 2025.10,\"_ Oct. 2025. Available online at\n[www.pytensorlab.net](https://www.pytensorlab.net).\n\n## Contributors\n\nWe would like to thank all contributors:\n\n- Ayvaz, Muzaffer\n- Bouss\u00e9, Martijn\n- De Lathauwer, Lieven\n- Devogel, Andreas\n- Govindarajan, Nithin\n- Hendrickx, Stijn\n- Iannacito, Martina\n- Seeuws, Nick\n- Sofi, Shakir\n- Vermeylen, Charlotte\n- Vervliet, Nico\n- Widdershoven, Rapha\u00ebl\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for tensor computations.",
    "version": "2025.10.3b0",
    "project_urls": {
        "Bug Tracker": "https://gitlab.esat.kuleuven.be/tensorgroup-public/pytensorlab-public/-/issues",
        "Documentation": "https://www.pytensorlab.net/docs/",
        "Homepage": "https://www.pytensorlab.net/",
        "Repository": "https://gitlab.esat.kuleuven.be/tensorgroup-public/pytensorlab-public"
    },
    "split_keywords": [
        "tensor",
        " array",
        " tensor decomposition",
        " visualization",
        " complex optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8672c151b265f618d876c85fd04cfe7fd42f32cdf10bc5a866ca1e946e8cc6b9",
                "md5": "e0ca8e659ed543e563cf62e85b7234fe",
                "sha256": "e0c77f694df28fdf4fce7794e081991c3c7bce9d2deb21355cd131f911fb1fc4"
            },
            "downloads": -1,
            "filename": "pytensorlab-2025.10.3b0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e0ca8e659ed543e563cf62e85b7234fe",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 254282,
            "upload_time": "2025-10-14T23:15:17",
            "upload_time_iso_8601": "2025-10-14T23:15:17.007891Z",
            "url": "https://files.pythonhosted.org/packages/86/72/c151b265f618d876c85fd04cfe7fd42f32cdf10bc5a866ca1e946e8cc6b9/pytensorlab-2025.10.3b0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd461dc3ae176eaaa298cc01a5fddcab61da7431321f4ffca2ef30661c88f31d",
                "md5": "23890a3fa69d3653f238831cd5297271",
                "sha256": "a640ba6580a82f19bde9cd7e9e17854057fa5d13ca2545857ee396c57151e004"
            },
            "downloads": -1,
            "filename": "pytensorlab-2025.10.3b0.tar.gz",
            "has_sig": false,
            "md5_digest": "23890a3fa69d3653f238831cd5297271",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 219667,
            "upload_time": "2025-10-14T23:15:18",
            "upload_time_iso_8601": "2025-10-14T23:15:18.986330Z",
            "url": "https://files.pythonhosted.org/packages/fd/46/1dc3ae176eaaa298cc01a5fddcab61da7431321f4ffca2ef30661c88f31d/pytensorlab-2025.10.3b0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-14 23:15:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pytensorlab"
}
        
Elapsed time: 2.51217s