pyABC
=====
.. figure:: https://raw.githubusercontent.com/ICB-DCM/pyABC/main/doc/logo/logo.svg
:alt: pyABC logo
:width: 30 %
:align: center
|CI| |docs| |codecov| |pypi| |doi| |black|
Massively parallel, distributed and scalable ABC-SMC
(Approximate Bayesian Computation - Sequential Monte Carlo)
for parameter estimation of complex stochastic models.
Provides numerous state-of-the-art algorithms for
efficient, accurate, robust likelihood-free inference,
described in the documentation and illustrated in example
notebooks.
Written in Python with support for especially R and Julia.
- **Documentation:** https://pyabc.rtfd.io
- **Examples:** http://pyabc.rtfd.io/en/latest/examples.html
- **Contact:** https://pyabc.rtfd.io/en/latest/about.html
- **Bug reports:** https://github.com/icb-dcm/pyabc/issues
- **Source code:** https://github.com/icb-dcm/pyabc
- **Cite:** https://pyabc.rtfd.io/en/latest/cite.html
.. |CI| image:: https://github.com/ICB-DCM/pyABC/workflows/CI/badge.svg
:target: https://github.com/ICB-DCM/pyABC/actions
:alt: CI
.. |docs| image:: https://readthedocs.org/projects/pyabc/badge/?version=latest
:target: http://pyabc.readthedocs.io/en/latest/
:alt: Docs
.. |codecov| image:: https://codecov.io/gh/ICB-DCM/pyABC/branch/main/graph/badge.svg
:target: https://codecov.io/gh/ICB-DCM/pyABC
:alt: Codecov
.. |pypi| image:: https://badge.fury.io/py/pyabc.svg
:target: https://badge.fury.io/py/pyabc
:alt: PyPI
.. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3257587.svg
:target: https://doi.org/10.5281/zenodo.3257587
:alt: DOI
.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Code style: Black
Raw data
{
"_id": null,
"home_page": "https://github.com/icb-dcm/pyabc",
"name": "pyabc",
"maintainer": "Yannik Schaelte",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "yannik.schaelte@gmail.com",
"keywords": "likelihood-free, inference, abc, approximate bayesian computation, sge, distributed",
"author": "The pyABC developers",
"author_email": "yannik.schaelte@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/44/29/6697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74/pyabc-0.12.15.tar.gz",
"platform": null,
"description": "pyABC\n=====\n\n.. figure:: https://raw.githubusercontent.com/ICB-DCM/pyABC/main/doc/logo/logo.svg\n :alt: pyABC logo\n :width: 30 %\n :align: center\n\n|CI| |docs| |codecov| |pypi| |doi| |black|\n\nMassively parallel, distributed and scalable ABC-SMC\n(Approximate Bayesian Computation - Sequential Monte Carlo)\nfor parameter estimation of complex stochastic models.\nProvides numerous state-of-the-art algorithms for\nefficient, accurate, robust likelihood-free inference,\ndescribed in the documentation and illustrated in example\nnotebooks.\nWritten in Python with support for especially R and Julia.\n\n- **Documentation:** https://pyabc.rtfd.io\n- **Examples:** http://pyabc.rtfd.io/en/latest/examples.html\n- **Contact:** https://pyabc.rtfd.io/en/latest/about.html\n- **Bug reports:** https://github.com/icb-dcm/pyabc/issues\n- **Source code:** https://github.com/icb-dcm/pyabc\n- **Cite:** https://pyabc.rtfd.io/en/latest/cite.html\n\n.. |CI| image:: https://github.com/ICB-DCM/pyABC/workflows/CI/badge.svg\n :target: https://github.com/ICB-DCM/pyABC/actions\n :alt: CI\n\n.. |docs| image:: https://readthedocs.org/projects/pyabc/badge/?version=latest\n :target: http://pyabc.readthedocs.io/en/latest/\n :alt: Docs\n\n.. |codecov| image:: https://codecov.io/gh/ICB-DCM/pyABC/branch/main/graph/badge.svg\n :target: https://codecov.io/gh/ICB-DCM/pyABC\n :alt: Codecov\n\n.. |pypi| image:: https://badge.fury.io/py/pyabc.svg\n :target: https://badge.fury.io/py/pyabc\n :alt: PyPI\n\n.. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3257587.svg\n :target: https://doi.org/10.5281/zenodo.3257587\n :alt: DOI\n\n.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n :target: https://github.com/psf/black\n :alt: Code style: Black\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Distributed, likelihood-free ABC-SMC inference",
"version": "0.12.15",
"project_urls": {
"Bug Tracker": "https://github.com/icb-dcm/pyabc/issues",
"Changelog": "https://github.com/ICB-DCM/pyABC/blob/main/CHANGELOG.rst",
"Documentation": "https://pyabc.readthedocs.io",
"Download": "https://github.com/icb-dcm/pyabc/releases",
"Homepage": "https://github.com/icb-dcm/pyabc"
},
"split_keywords": [
"likelihood-free",
" inference",
" abc",
" approximate bayesian computation",
" sge",
" distributed"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5f01628b870d2521f444636564e533a9c6389a0cdc75eebcc3c2be6540200505",
"md5": "6842ede94acd3c73843d7d7a65ab6311",
"sha256": "3dce469b5570d61a36fb646c014d514adc9106ecd74ad53b4a249b4c998e77ca"
},
"downloads": -1,
"filename": "pyabc-0.12.15-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6842ede94acd3c73843d7d7a65ab6311",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 357357,
"upload_time": "2024-11-11T09:22:16",
"upload_time_iso_8601": "2024-11-11T09:22:16.204135Z",
"url": "https://files.pythonhosted.org/packages/5f/01/628b870d2521f444636564e533a9c6389a0cdc75eebcc3c2be6540200505/pyabc-0.12.15-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "44296697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74",
"md5": "cd3363b6169471a62fc7b90eb414ef92",
"sha256": "22f7cc8d66746c08d1f708823369e05e611cec5183fef12f17f8a45b7debd79b"
},
"downloads": -1,
"filename": "pyabc-0.12.15.tar.gz",
"has_sig": false,
"md5_digest": "cd3363b6169471a62fc7b90eb414ef92",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 282409,
"upload_time": "2024-11-11T09:22:18",
"upload_time_iso_8601": "2024-11-11T09:22:18.135684Z",
"url": "https://files.pythonhosted.org/packages/44/29/6697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74/pyabc-0.12.15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-11 09:22:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "icb-dcm",
"github_project": "pyabc",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "pyabc"
}