pyabc


Namepyabc JSON
Version 0.12.15 PyPI version JSON
download
home_pagehttps://github.com/icb-dcm/pyabc
SummaryDistributed, likelihood-free ABC-SMC inference
upload_time2024-11-11 09:22:18
maintainerYannik Schaelte
docs_urlNone
authorThe pyABC developers
requires_python>=3.10
licenseBSD-3-Clause
keywords likelihood-free inference abc approximate bayesian computation sge distributed
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pyABC
=====

.. figure:: https://raw.githubusercontent.com/ICB-DCM/pyABC/main/doc/logo/logo.svg
   :alt: pyABC logo
   :width: 30 %
   :align: center

|CI| |docs| |codecov| |pypi| |doi| |black|

Massively parallel, distributed and scalable ABC-SMC
(Approximate Bayesian Computation - Sequential Monte Carlo)
for parameter estimation of complex stochastic models.
Provides numerous state-of-the-art algorithms for
efficient, accurate, robust likelihood-free inference,
described in the documentation and illustrated in example
notebooks.
Written in Python with support for especially R and Julia.

- **Documentation:** https://pyabc.rtfd.io
- **Examples:** http://pyabc.rtfd.io/en/latest/examples.html
- **Contact:** https://pyabc.rtfd.io/en/latest/about.html
- **Bug reports:** https://github.com/icb-dcm/pyabc/issues
- **Source code:** https://github.com/icb-dcm/pyabc
- **Cite:** https://pyabc.rtfd.io/en/latest/cite.html

.. |CI| image:: https://github.com/ICB-DCM/pyABC/workflows/CI/badge.svg
   :target: https://github.com/ICB-DCM/pyABC/actions
   :alt: CI

.. |docs| image:: https://readthedocs.org/projects/pyabc/badge/?version=latest
   :target: http://pyabc.readthedocs.io/en/latest/
   :alt: Docs

.. |codecov| image:: https://codecov.io/gh/ICB-DCM/pyABC/branch/main/graph/badge.svg
   :target: https://codecov.io/gh/ICB-DCM/pyABC
   :alt: Codecov

.. |pypi| image:: https://badge.fury.io/py/pyabc.svg
   :target: https://badge.fury.io/py/pyabc
   :alt: PyPI

.. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3257587.svg
   :target: https://doi.org/10.5281/zenodo.3257587
   :alt: DOI

.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
   :target: https://github.com/psf/black
   :alt: Code style: Black

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/icb-dcm/pyabc",
    "name": "pyabc",
    "maintainer": "Yannik Schaelte",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "yannik.schaelte@gmail.com",
    "keywords": "likelihood-free, inference, abc, approximate bayesian computation, sge, distributed",
    "author": "The pyABC developers",
    "author_email": "yannik.schaelte@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/44/29/6697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74/pyabc-0.12.15.tar.gz",
    "platform": null,
    "description": "pyABC\n=====\n\n.. figure:: https://raw.githubusercontent.com/ICB-DCM/pyABC/main/doc/logo/logo.svg\n   :alt: pyABC logo\n   :width: 30 %\n   :align: center\n\n|CI| |docs| |codecov| |pypi| |doi| |black|\n\nMassively parallel, distributed and scalable ABC-SMC\n(Approximate Bayesian Computation - Sequential Monte Carlo)\nfor parameter estimation of complex stochastic models.\nProvides numerous state-of-the-art algorithms for\nefficient, accurate, robust likelihood-free inference,\ndescribed in the documentation and illustrated in example\nnotebooks.\nWritten in Python with support for especially R and Julia.\n\n- **Documentation:** https://pyabc.rtfd.io\n- **Examples:** http://pyabc.rtfd.io/en/latest/examples.html\n- **Contact:** https://pyabc.rtfd.io/en/latest/about.html\n- **Bug reports:** https://github.com/icb-dcm/pyabc/issues\n- **Source code:** https://github.com/icb-dcm/pyabc\n- **Cite:** https://pyabc.rtfd.io/en/latest/cite.html\n\n.. |CI| image:: https://github.com/ICB-DCM/pyABC/workflows/CI/badge.svg\n   :target: https://github.com/ICB-DCM/pyABC/actions\n   :alt: CI\n\n.. |docs| image:: https://readthedocs.org/projects/pyabc/badge/?version=latest\n   :target: http://pyabc.readthedocs.io/en/latest/\n   :alt: Docs\n\n.. |codecov| image:: https://codecov.io/gh/ICB-DCM/pyABC/branch/main/graph/badge.svg\n   :target: https://codecov.io/gh/ICB-DCM/pyABC\n   :alt: Codecov\n\n.. |pypi| image:: https://badge.fury.io/py/pyabc.svg\n   :target: https://badge.fury.io/py/pyabc\n   :alt: PyPI\n\n.. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3257587.svg\n   :target: https://doi.org/10.5281/zenodo.3257587\n   :alt: DOI\n\n.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n   :target: https://github.com/psf/black\n   :alt: Code style: Black\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Distributed, likelihood-free ABC-SMC inference",
    "version": "0.12.15",
    "project_urls": {
        "Bug Tracker": "https://github.com/icb-dcm/pyabc/issues",
        "Changelog": "https://github.com/ICB-DCM/pyABC/blob/main/CHANGELOG.rst",
        "Documentation": "https://pyabc.readthedocs.io",
        "Download": "https://github.com/icb-dcm/pyabc/releases",
        "Homepage": "https://github.com/icb-dcm/pyabc"
    },
    "split_keywords": [
        "likelihood-free",
        " inference",
        " abc",
        " approximate bayesian computation",
        " sge",
        " distributed"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f01628b870d2521f444636564e533a9c6389a0cdc75eebcc3c2be6540200505",
                "md5": "6842ede94acd3c73843d7d7a65ab6311",
                "sha256": "3dce469b5570d61a36fb646c014d514adc9106ecd74ad53b4a249b4c998e77ca"
            },
            "downloads": -1,
            "filename": "pyabc-0.12.15-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6842ede94acd3c73843d7d7a65ab6311",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 357357,
            "upload_time": "2024-11-11T09:22:16",
            "upload_time_iso_8601": "2024-11-11T09:22:16.204135Z",
            "url": "https://files.pythonhosted.org/packages/5f/01/628b870d2521f444636564e533a9c6389a0cdc75eebcc3c2be6540200505/pyabc-0.12.15-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44296697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74",
                "md5": "cd3363b6169471a62fc7b90eb414ef92",
                "sha256": "22f7cc8d66746c08d1f708823369e05e611cec5183fef12f17f8a45b7debd79b"
            },
            "downloads": -1,
            "filename": "pyabc-0.12.15.tar.gz",
            "has_sig": false,
            "md5_digest": "cd3363b6169471a62fc7b90eb414ef92",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 282409,
            "upload_time": "2024-11-11T09:22:18",
            "upload_time_iso_8601": "2024-11-11T09:22:18.135684Z",
            "url": "https://files.pythonhosted.org/packages/44/29/6697cb3df23d3430259fc3776f9d6ca9b0372c5443e0a9331f554de4ef74/pyabc-0.12.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-11 09:22:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "icb-dcm",
    "github_project": "pyabc",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "pyabc"
}
        
Elapsed time: 0.43111s